机器学习
i_am_will
联系方式:1524405292@qq.com
展开
-
吴恩达神经风格迁移-通道变量相关性代表风格相近性
主要内容:一.神经风格迁移简介二.计算content cost三.计算style cost一.神经风格迁移简介1.神经风格迁移(Neural Style Transfer),简称为NST,就是以一张图为内容基础,以另一张图为风格基础,生成一张新的图:2.NST使用一张已经训练好的神经网络VGG network作为算法的基础。可知神经网络的浅层学习一些比较低级的特征诸如边界和纹理的等,深层学些一些复杂抽象的特征。为了学习得比较精确但又不过于苛刻,我们一般选择VGG ne..转载 2020-06-30 00:14:34 · 889 阅读 · 1 评论 -
k-means 算法octave实现
转载:https://www.cnblogs.com/pascal1000/articles/12470630.html一、机器学习 k-means octave实现1 看效果:2 octave代码:function idx = findClosestCentroids(X, centroids) % Set K K = size(centroids, 1); % You need to return the following va...转载 2020-06-21 19:14:25 · 359 阅读 · 0 评论 -
神经网络的一些衡量参数
衡量参数:训练集误差验证或测试集的误差查准率查全率(查全率高:宁可错杀一千,不可放过一个)学习曲线(训练和测试误差,随训练数据集数量的变化趋势)两种现象:欠拟合和过拟合先构建一个简单的应用,避免过早优化,进行误差分析,确定优化方向。解决办法:获取更多数据集增加或减少特征的数量增加多项式的使用正则化参数lamda的增大或减小...原创 2020-06-21 18:27:24 · 519 阅读 · 0 评论 -
sigmoid函数及其导数
sigmoid函数:g = 1.0 ./ (1.0 + exp(-z));sigmoid函数的导数:g=sigmoid(z).*(1-sigmoid(z));原创 2020-06-21 17:09:10 · 2481 阅读 · 0 评论 -
神经网络的前置函数公式,反向传播公式,参数更新公式
复合函数求导法则:原创 2020-06-21 13:51:46 · 892 阅读 · 0 评论 -
过拟合问题,正则化
参数过多,尤其引入多项式之后如果数据样本不够,会造成过拟合问题。可以通过引入正则化(regularization),进行解决。在代价函数后,对参数的平方进行求和,乘以一个常数(正则化参数)...原创 2020-06-19 14:54:58 · 179 阅读 · 0 评论 -
二元分类,逻辑回归,标准梯度下降,octave实现
clearclc%% 数据准备%X = xlsread('C:\Users\user01\Desktop\test.xlsx');%二分类 随机生成数据。 200个数据 每个数据2个特征data=1*rand(3000,2);label=zeros(3000,1);%label(sqrt(data(:,1).^2+data(:,2).^2)<8)=1;label((data(:,2)+data(:,1)>1))=1;%在data上加常数特征项;data=[data,o...原创 2020-06-19 12:01:47 · 394 阅读 · 0 评论 -
线性梯度回归,使用octave实现
function [initw] = lineGred() x = randi(10,20,2) realw = [2 3] y = x* realw' initw = [1 1] j = sum(power((x * initw' - y),2)) / size(x,1) while j > 0.001 swapw = sum((x * initw' - y).*x) / size(x,1) initw = initw - 0.01*swapw ...原创 2020-06-18 12:55:26 · 154 阅读 · 0 评论