兴安岭大马猴多惊悚?16978条弹幕告诉你!

东北民间流传着关于“皇围猎人”的神秘传说,他们世代生存于深山,为帝王守护兴安岭这片龙兴之地的气脉运转。传闻猎人除了精通狩猎之法,更知晓驱鬼通神之术。在东北一处偏僻的山村里,悄然发生一起灭门惨案,在村民们的恳求下,最后一代皇围猎人刘二爷决定出山调查真相,不想过程中怪事屡现,老林子里的秘密也被渐渐揭开.....图片咱打小就喜欢看这种片子,大兴安岭、东北马氏、神农架、盗墓笔记、鬼吹灯这种片子看得我是不亦乐乎。前一个月在抖音上看到这部片子预告的时候就已经迫不及待了,今天为了看片还专门开了个腾讯会员。看完一个字:过瘾!了解一下其他小伙伴看此片的有什么感受,今天就用python爬虫来获取一下16978条弹幕都说了啥?

图片

老规矩,搞爬虫就上三部曲:1--获取目标网址;2--发送请求;3--获取响应我们的目标是腾讯视频,所以首先打开软件搜索我们的电影猎人传说,可以看到弹幕在不断的刷新,后台数据也是在不断刷新的。

图片

针对这种情况我们该如何快速锁定这些弹幕呢?打开之后搜索F12打开开发者模式,然后搜索其中一条弹幕信息,然后找到它所对应的链接如下:复制链接到网页发现包含210条弹幕信息,而我们所要的信息都在这个'content'的字段里。图片返回浏览器的Preview也可以看到同类信息。这些弹幕信息也是在content中。图片我们先来试试获取这些弹幕信息。#获取浏览器响应信息resp = requests.get(url, headers = headers)#转为json对象json_data = json.loads(resp.text)['comments']#打印浏览器响应数据print(json_data)

结果如下,可以看到我们已经成功获取到了浏览器相应的信息。姑且可以从中获取我们想要的弹幕信息。

从上图可以看出我们想要获取的content信息都包含在我们已经获取到的jason数据中,我们接下来要做的只是遍历出其中信息即可。#遍历comments中的弹幕信息for comment in json_data:    print(comment['content'])结果如下:

图片

可以看出,获取一个请求的弹幕信息已经成功抓取到我们本地。但是我们要获取的是整部片子的弹幕。这只是其中一条请求的210条弹幕而已。所以接下来的重点是如何获取全部的请求。这里有一个取巧办法,搜索第一条弹幕链接和最后一条弹幕链接。找出来做对比。找出规律:https://mfm.video.qq.com/danmu?target_id=6661354455%26vid%3Di003639l2zy&timestamp=15https://mfm.video.qq.com/danmu?target_id=6661354455%26vid%3Di003639l2zy&timestamp=2445发现它的参数timestamp是从15开始到2445结束的。所以我们可以使用一个函数来获取这些弹幕请求信息:def get_danmu():    url = 'https://mfm.video.qq.com/danmu?target_id=6661354455%26vid%3Di003639l2zy&timestamp=15'    for i in range(15, 2445, 30):        data = {'timestamp':i}        res = requests.get(url, params = data, headers = headers)        # 转为json对象        json_data = json.loads(res.text)['comments']        # 遍历comments中的弹幕信息        for comment in json_data:            print(comment['content'])到此位置整部片子的所有弹幕已经保存于本地了,接下来我们要词云做更加直观的显示,所以我们先将这些数据保存到本地txt文档中。comments_file_path = 'lrcs_comments.txt'# 获取comments中的弹幕信息并且写入指定路径        for comment in json_data:            with open(comments_file_path, 'a+', encoding = 'utf-8')as fin:                fin.write(comment['content']+'\n')

图片

文本保存好之后第一步我们需要切割分词,这里我们采用精确模式来切割最适合用于数据分析。#切割单词#定义切割单词函数def cut_words():    #读取文本    with open(comments_file_path, encoding = 'utf-8') as file:        comment_text = file.read()        #使用jieba精确模式,句子最精确地切开,适合文本分析        word_list = jieba.lcut_for_search(comment_text)        new_word_list = ' '.join(word_list)        return new_word_list结果如下:

图片

分词切割好之后我们就可以用它来做词云图了#制作词云图函数def create_word_cloud():    #自定义图片    mask = imread('img.png')    wordcloud = WordCloud(font_path='msyh.ttc', mask=mask).generate(cut_words())    wordcloud.to_file('picture.png')我在此选的图片是一张大马猴的图片。

图片

最终词云图如下:

图片

感觉一部惊悚片愣是被小伙伴们看出了喜感。这审美差距十万八千里啊!有空你也看一下,完了写一下你的观后感~~~~

若是需要源码研究,公众号‘印象python’后台回复'大马猴'就可以啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

印象Python

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值