利用Python进行数据分析
寻光
这个作者很懒,什么都没留下…
展开
-
pandas入门_DataFrame
DataFrame 表示一种矩阵的数据表,数据存储在二维块,既有行索引又有列索引。 1.构建DataFrame,最常用的是利用等长度列表和Numpy数组字典的形式形成DataFrame:(所有列序的长度必须相等) In [28]: data={'state':['one','two','three','four','five'], ...: 'year':[2000,2001,202,2003,2004], ...: 'pop':[1.5,4,5,9,10.2]} In [29]: fra原创 2020-10-30 12:38:28 · 199 阅读 · 0 评论 -
pandas入门_Series
pandas入门 series 一种一维的数组型对象,数据结构为 索引 + 值 为一个序列: import pandas as pd 1.一个最简单的Series序列: In [3]: obj=pd.Series([4,7,-5,3]) In [4]: obj Out[4]: 0 4 1 7 2 -5 3 3 dtype: int64 2.索引在左,值在右,默认索引为int类型 0~N-1.可以自定义索引: In [5]: obj2=pd.Series([2,4,6,8],index=['a','b',原创 2020-10-30 11:19:45 · 140 阅读 · 0 评论 -
Numpy中的线性代数
Numpy中的线性代数: numpy.linalg函数 import numpy as np 1.创建函数 A = np.mat('0 1 2;1 0 3;4 -3 8') print(A) #[[0 1 2]] #[[1 0 3]] #[[4 -3 8]] 2.使用inv函数计算逆矩阵 inv = np.linalg.inv(A) print(inv) #[[-4.5 7. -1.5 ]] #[-2. 4. -1.] #[1.5 -2. 0.5]] 3.求解线性方程组 numpy.linalg原创 2020-10-30 11:18:30 · 269 阅读 · 0 评论