[LeetCode] 486.预测赢家

这篇博客探讨了如何利用动态规划方法解决博弈策略问题,如记忆化递归和极小化极大minmax策略。文章详细介绍了动态规划的步骤,包括设计dp数组、状态转移、初始化和遍历顺序,并给出了具体的C++实现示例,用于判断玩家是否能在游戏中获胜。
摘要由CSDN通过智能技术生成

好几种方法:记忆化递归、动态规划、极小化极大minmax

动态规划方法:

1.设计dp数组:dp[i][j]中i和j用于表示当前数组的范围,dp[i][j]存放的是两个玩家都想要取胜则两者的分数差值。

2.状态转移:(i,j)由(i+1,j)和(i,j-1)推出,dp[i][j] = max( (nums[i] - dp[i+1][j]), (nums[j] - dp[i][j-1])).

3.初始化:从最后一步考虑,当数组只有一个数值时,对应的那个玩家必须那这个数字,这一步对应i==j,因此初始化dp[i][i]=nums[i]。

4.遍历顺序:(i,j)由(i+1,j)和(i,j-1)推出,即ij的下方和左侧,因此遍历顺序为从下到上,从左到右

class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        //初始化:dp[i][j]表示某个玩家在数组[i,j]的范围中想要获胜,其与另一个玩家的分数差值
        int dp[22][22];
        for(int i = 0; i < nums.size(); i++) {
            //可以确定的是当只剩最后一个数字时,玩家必须拿到才能赢。
            dp[i][i] = nums[i];
        }
        //状态转移。遍历顺序从右下开始,由下至上,由左至右
        for(int i = nums.size()-2; i >= 0; i--) {
            for(int j = i+1; j < nums.size(); j++) {
                dp[i][j] = max( (nums[i] - dp[i+1][j]), (nums[j] - dp[i][j-1]) );
            }
        }

        if(dp[0][nums.size()-1] < 0) {
            return false;
        }
        return true;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值