04、数组

目录

1. 概念(是什么)

i.    数组

ii.    线性表(Linear List)

iii.    非线性表

iV.    连续的内存空间和相同类型的数据

2. 知识点小课堂

i.    数组是如何实现根据下标随机访问数组元素的?

ii.    插入和删除为何效率低?

插入

删除

iii.    容器(ArrayList)与数组

ArrayList 的优势

3. 应用场景

i.    容器与数组的选择

4. 面试题

i.    数组和链表的区别

ii.    为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始呢?


1. 概念(是什么)

i.    数组

数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。

ii.    线性表(Linear List)

线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。其实除了数组,链表、队列、栈等也是线性表结构。

iii.    非线性表

之所以叫非线性,是因为,在非线性表中,数据之间并不是简单的前后关系。比如二叉树、堆、图等。

iV.    连续的内存空间和相同类型的数据

正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。

 

2. 知识点小课堂

i.    数组是如何实现根据下标随机访问数组元素的?

拿一个长度为 10 的 int 类型的数组 int[] a = new int[10]来举例。下图中,计算机给数组 a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。

计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:

a[i]_address = base_address + i * data_type_size

其中 data_type_size 表示数组中每个元素的大小。举的这个例子里,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节。

ii.    插入和删除为何效率低?

插入

有序数组:假设数组的长度为 n,现在将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,需要将第 k~n 这部分的元素都顺序地往后挪一位。那插入操作的时间复杂度是多少呢?

如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。 因为在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+…n)/n=O(n)

无序数组:如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数据插入到第 k 个位置,为了避免大规模的数据搬移,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。利用这种处理技巧,在特定场景下,在第 k 个位置插入一个元素的时间复杂度就会降为 O(1)

举个栗子:

假设数组 a[10]中存储了如下 5 个元素:a,b,c,d,e。将元素 x 插入到第 3 个位置。只需要将 c 放入到 a[5],将 a[2]赋值为 x 即可。最后,数组中的元素如下: a,b,x,d,e,c。

删除

如果要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。

如果删除数组末尾的数据,则最好情况时间复杂度为 O(1)

如果删除开头的数据,则最坏情况时间复杂度为 O(n);平均情况时间复杂度也为 O(n)。

实际上,在某些特殊场景下,并不一定非得追求数组中数据的连续性。如果将多次删除操作集中在一起执行,删除的效率会提高很多。

举个栗子:

数组 a[10]中存储了 8 个元素:a,b,c,d,e,f,g,h。依次删除 a,b,c 三个元素。

 为了避免 d,e,f,g,h 这几个数据会被搬移三次,可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当记录数据使用的数组没有更多空间存储数据时,再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。

这与 JVM 标记清除垃圾回收算法的核心思想实现是相同的。

iii.    容器(ArrayList)与数组

ArrayList 的优势

  1. 可以将很多数组操作的细节封装起来。
  2. 支持动态扩容。每次存储空间不够的时候,它都会将空间自动扩容为 1.5 倍大小。
  3. 注意点:因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小。

数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果申请了大小为 10 的数组,当第 11 个数据需要存储到数组中时,就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。

 

3. 应用场景

i.    容器与数组的选择

  1. Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。
  2. 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。
  3. 还有一个是我个人的喜好,当要表示多维数组时,用数组往往会更加直观。比如 Object[][] array;而用容器的话则需要这样定义:ArrayList > array。

综上所述,对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。

 

4. 面试题

i.    数组和链表的区别

日常可能出现的答案

  1. 链表适合插入、删除,时间复杂度 O(1)。
  2. 数组适合查找,查找时间复杂度为 O(1)。

准确描述

  1. 数组是适合查找操作,但是查找的时间复杂度并不为 O(1)。
  2. 即便是排好序的数组,用二分查找,时间复杂度也是 O(logn)。
  3. 数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)。

从底层的存储结构分析

从图中我们看到,数组需要一块连续的内存空间来存储,对内存的要求比较高。如果申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。

而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用,所以如果申请的是 100MB 大小的链表,根本不会有问题。

实际开发应用

  • 缓存机制

数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。

链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。

  • 内存分布

数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。

链表本身没有大小的限制,天然地支持动态扩容。

  • Java 中的 ArrayList 容器也可以支持动态扩容, 为什么不使用呢?

当往支持动态扩容的数组中插入一个数据时,如果数组中没有空闲空间了,就会申请一个更大的空间,将数据拷贝过去,而数据拷贝的操作是非常耗时的

举一个稍微极端的例子。如果用 ArrayList 存储了了 1GB 大小的数据,这个时候已经没有空闲空间了,当再插入数据的时候,ArrayList 会申请一个 1.5GB 大小的存储空间,并且把原来那 1GB 的数据拷贝到新申请的空间上。听起来是不是就很耗时?

除此之外,如果代码对内存的使用非常苛刻,那数组就更适合。因为链表中的每个结点都需要消耗额外的存储空间去存储一份指向下一个结点的指针,所以内存消耗会翻倍。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片,如果是 Java 语言,就有可能会导致频繁的 GC(Garbage Collection,垃圾回收)。

ii.    为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始呢?

从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0]就是偏移为 0 的位置,也就是首地址,a[k]就表示偏移 k 个 type_size 的位置,所以计算 a[k]的内存地址只需要用这个公式:

a[k]_address = base_address + k * type_size

但是,如果数组从 1 开始计数,那计算数组元素 a[k]的内存地址就会变为:

a[k]_address = base_address + (k-1)*type_size

对比两个公式,不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。

数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页