卷积神经网络卷积计算具体过程?

看了很多资料,三维卷积的计算都是如图一所示,但是自己上次验证的结果却不满足图一的运算规则,今天手动验证了一下,三维卷积的运算规则就是按图一所示。只能说python对矩阵的计算应该还不够强大吧,哎,或者是自己代码写错了。。。
对于卷积神经网络中的计算,大部分人所知道的计算如图一所示:卷积核中的各参数与图像矩阵相应位置的数值相乘后再求和。但是实际计算时图像往往是rgb图像,即图像有三个通道,每张输入图像有三个二维矩阵(也说图像的深度为3),而且卷积核的数量也不止一个,所以在实际计算中是每个卷积核分别与矩阵的不同通道计算再加和,还是卷积核与所以通道同时计算,还是有其它的计算规则呢?有些人给出的解释如图二所示,为了验证图二的卷积计算过程用tensorflow(tf.nn.conv2d())进行了实验,但是实验结果却和图二不一致,反而更像是按图三的计算规则进行的,请大神们给予指导

在图一这里插入图片描述
图一
在图二这里插入图片描述
图二

经实验得到的卷积计算规则:
每一个(共五个:自己选取的数量)卷积核中的每一个通道(

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值