自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(43)
  • 收藏
  • 关注

原创 Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition

上周看了一下Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition(2020CVPR)这篇paper,然后分享一下我对于这篇论文的一些理解吧,当然还有的部分没有看太明白,希望以后大佬可以写一个对于该篇paper的解读。把论文链接和code链接都丢下面。https://arxiv.org/pdf/2003.14111.pdf​arxiv.orghttps://github.com/ke.

2020-05-27 10:21:12 2583 11

原创 FRFGCN Behavioral Recognition of Skeletal Data Based on Targeted Dual Fusion Strategy翻译

在骨骼数据行为识别中采用多流融合策略可以从不同信息流中提取互补特征,提高识别精度,但存在模型复杂度高、参数多的问题。此外,使用固定邻接矩阵的现有多流方法使模型在不同动作之间的识别过程均匀化,从而降低了多流模型的实际升力。最后,注意机制通常应用于多维特征,包括空间、时间和通道维度。但他们的注意力得分通常以一种串联的方式融合在一起,导致忽视了复杂动作中关节之间的相互关系。为了解决这些问题,提出了一种基于骨架数据的轻量级模型——前后双融合图卷积网络(FRF-GCN)。

2024-11-27 16:07:22 799

原创 MTCNN论文翻译

由于各种姿势,照明和遮挡,在无约束环境中进行人脸检测和对齐具有挑战性。最近的研究表明,深度学习方法可以在这两项任务上取得令人印象深刻的表现。在本文中,我们提出了一个深度级联的多任务框架,利用检测和对齐之间的内在相关性来提高它们的性能。特别是,我们的框架利用级联架构和精心设计的深度卷积网络的三个阶段,以从粗到精的方式预测人脸和landmark。此外,我们提出了一种新的在线难样本挖掘策略,在实践中进一步提高了性能。

2024-11-26 09:59:49 697

原创 Tensorrt安装

可参考官方文档 https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html。

2024-11-14 14:39:42 919

原创 使用labelme中的AI模型提升数据标注速度

使用labelme中的AI模型辅助自己进行数据标注

2024-11-04 20:30:47 1147 4

原创 ImportError: cannot import name ‘Config‘ from ‘mmcv‘ 问题解决

改为:from mmengine import Config, DictAction。将 from mmcv import Config, DictAction。高版本的mmcv已经灭有这个法那个法了,移到mmengine里面去了。

2024-04-25 13:56:00 7954 3

原创 P2PNet推理和训练

原因:原来是在pillow的10.0.0版本中,ANTIALIAS方法被删除了,使用新的方法即可。分别修改dataset_path 和output_path 来生成两个对应的list。将Image.LANCZOS替换为Image.Resampling.LANCZOS。此时需要你先创建logs文件,要不然看不到预测的图片。根据url下载,并修改模型的相关路径。将misc.py里的if语句注释到。

2024-01-22 17:15:47 987 2

原创 Miniconda3环境迁移

conda之前安装的默认路径空间满了没法进行安装,为此将其进行迁移,但是迁移之后报错。1、修改~/.bashrc中的环境变量,将conda的相关路径修改成最新的。7、修改虚拟环境中的pip和pip3。

2023-09-05 11:07:02 940

原创 玩转AIGC神器MMagic

经过 OpenMMLab 2.0 框架的迭代更新以及与 MMGeneration 的合并,MMEditing 已经成为了一个支持基于 GAN 和 CNN 的底层视觉算法的强大工具。而今天,MMEditing 将更加拥抱生成式 AI(Generative AI),正式更名为ultimodaldvanced,ntelligentreation),致力于打造更先进、更全面的 AIGC 开源算法库。MMagic 将为广大研究者与 AIGC 爱好者们提供更加快捷灵活的实验支持,助力你的 AIGC 探索之旅。

2023-06-18 10:45:41 417

原创 底层视觉与MMEditing

项目,是基于 PyTorch 的图像和视频编辑开源工具箱。它目前包含了常见的编辑任务,比如图像修复,图像抠图,超分辨率和生成模型。在编辑图像或者视频的时候,我们往往是需要组合使用以上任务的,因此原作者们将它们整理到一个统一的框架下,方便大家使用。

2023-06-17 16:13:35 242

原创 MMsegmentation

MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。

2023-06-14 21:21:53 390

原创 MMdetection

MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。此外视频中也介绍了多尺度检测的一些策略,如图像金字塔,FPN等。MMDetection 支持了各种不同的检测任务,包括。

2023-06-11 18:24:25 68

原创 MMPreTrain笔记

MMPretrain 是一个全新升级的预训练开源算法框架,旨在提供各种强大的预训练主干网络, 并支持了不同的预训练策略。MMPretrain 源自著名的开源项目和,并开发了许多令人兴奋的新功能。目前,预训练阶段对于视觉识别至关重要,凭借丰富而强大的预训练模型,我们能够改进各种下游视觉任务。MMPreTrain代码库旨在成为一个易于使用和用户友好的代码库库,并简化学术研究活动和工程任务。

2023-06-08 22:10:22 118

原创 人体姿态估计(Human Pose Estimation)

姿态估计问题2D姿态估计和3D姿态估计。前者是为每个关键点预测一个二维坐标 (x,y);后者是为每个关键点预测一个三维坐标 (x,y,z) ,增加了一维深度信息。

2023-06-02 23:09:49 1145

原创 OPenMMLab开课

其中这些算法库中接触较多的就是MMAction2和MMDeploy这两个,不得不说MMAction2这个算法库还是很全面的对于一些经典的算法都做了整理,可以使用其中的代码快速实现自己的一个demo,还是非常方便的,不过貌似最近进行了版本升级支持的配置文件变少了。这次集训营中的包括了MMPose,Action和Pose还是有非常大关系的,所以对于这次的MMPose很还是很期待的,希望在这次活动中能够收获很多。

2023-06-01 21:30:14 100

原创 vscode无法远程连接服务器,但是xshell可以远程连接

根据输出信息,发现是由于远程主机的密钥发生了变化,导致 VS Code 无法连接。可以尝试更新本地known_hosts文件中的主机密钥,以便重新建立信任关系。

2023-04-24 14:43:40 3509

原创 docker拉去镜像报错: x509: certificate is valid for *.api-test.cfadevelop.com, *.app-test.cfadevelop.com,

大概率是因为docker的daemon.json中为配置国内镜像源的原因。在/etc/docker/daemon.json中新增国内镜像源。

2023-04-21 18:09:42 2683

原创 git提交报错文件超过100M

该问题的原因是git不允许提交大于100M的文件,而我提交过程中有个模型文件大小超过了100M,从而导致上传失败。此时会输出25cb793092c7ddcf9bdcd716eec9f4f8214fd081文件所对应的文件目录。2、在commit的提交历史里面去除这个超大文件。1、按照提示查看是哪个文件超过100M。出现这个说明删除成功。

2023-04-06 16:15:45 1748

原创 搭建自己的学术科研专用ChatGPT

最近在github上看到有大佬开源了一个科研工作专用ChatGPT,为此很感兴趣就根据说明自己在本地搭建了一下,此文章用来记录一下。

2023-04-05 22:03:47 1151

原创 CMake Error:CMake 3.14 or higher is required. You are running version 3.10.2

解决CMake版本过低问题,安装更高版本CMake

2022-12-16 10:26:04 5261 4

原创 Ubuntu18.04 pip3 出现bash: /usr/local/bin/pip3:/usr/bin/python3:解释器错误: 权限不够问题

Ubuntu18.04 pip3 出现bash: /usr/local/bin/pip3:/usr/bin/python3:解释器错误: 权限不够问题

2022-10-09 16:33:20 2743

原创 subprocess.CalledProcessError: Command ‘lsb_release -a‘ returned non-zero exit status 126

conda subprocess.CalledProcessError: Command 'lsb_release -a' returned non-zero exit status 126问题

2022-10-09 15:41:55 357

原创 git上传代码到代码库与删除代码库代码

git上传与删除

2022-08-15 16:17:46 1885

原创 天池比赛:广东电网智慧现场作业挑战赛之csv文件转xml文件

前段时间看了一下天池举行的广东电网智慧现场作业挑战赛(比赛链接https://tianchi.aliyun.com/competition/gameList/activeList,我在赛题下的论坛看到有小伙伴问怎么将赛题提供的csv文件转成yolo需要的xml文件,然后给小伙伴们提供一个思路。...

2021-06-20 09:41:47 849 1

原创 TypeError: new() received an invalid combination of arguments - got (float, int, int, int), but expe

TypeError: new() received an invalid combination of arguments - got (float, int, int, int), but expected one of: * (*, torch.device device) * (torch.Storage storage) * (Tensor other) * (tuple of ints size, *, torch.device device) * (object data, *, t.

2021-03-12 17:59:43 8866

原创 GraphSAGE学习心得

最近在参加百度的图神经网络七日打卡营,然后就记录一下最近几天的一些学习心得。本来也是做Skeleton-Based Action Recognition这个方向,然而由于近两年GCN的火热,从而出现了一系列基于GCN方法来做这方面的研究,而且取得的效果远超CNN和RNN,然后看到了百度的这个课就参加了一下,收获颇多。虽然说一直做基于GCN的Skeleton-Based Action Recognition但是其实对于经典的GNN的方法我并没有太多的了解,只是单纯的知道有哪些比如说GraphSAGE,GAT,

2020-11-28 10:43:35 1088

原创 RuntimeError: An attempt has been made to start a new process before the current pr

报错:RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you hav

2020-07-23 14:34:50 255

原创 SyntaxError: Generator expression must be parenthesized

Traceback (most recent call last): File "manage.py", line 22, in <module> execute_from_command_line(sys.argv) File "F:\Python_Carsh_Course\learningLog\ll_env\lib\site-packages\django\core\management\__init__.py", line 363, in execute_from_co.

2020-07-16 15:06:17 462

原创 Python编程从入门到实践 18.1.6 在Django中创建项目 创建失败问题

原文为这个 ,可是运行后没有新建django-admin.py startproject learning_log .改为下面的即可django-admin startproject learning_log .

2020-07-16 14:54:26 314

原创 TypeError: __init__() takes 1 positional argument but 2 were given

最近在更改MS-AAGCN模型的时候出现了这个问题然后搜了一下,发现原因是,应传一个参数,但是给赋值了2个然后又去看了一下nn.Sigmoid()方法,官网给出的例子如下然后把 s = nn.Sigmoid(x1) 改为 s = nn.Sigmoid() x1 = s(x1)代码就可以正常运行了。 ...

2020-07-14 11:41:53 3303

原创 pytorch中 tensor.dot()方法报错1D tensors expected, got 2D, 2D tensors

RuntimeError: 1D tensors expected, got 2D, 2D tensors at C:\w\1\s\windows\pytorch\aten\src\TH/generic/THTensorEvenMoreMath.cpp:774这是由于在pytorch0.3之后,tensor.dot()方法进行了更新,只能对1维的tensor进行点成运算。所以只要检查一下自己输...

2020-03-31 16:00:11 9267

原创 Python学习路线

在网上看到黑马的Python学习路线,分享给大家,大家可以学一下1,2两个部分后然后根据自己的方向来进行学习。

2020-03-21 14:13:37 154

原创 Action Recognition Using Attention-Joints Graph Convolutional Neural Networks翻译

对Action Recognition Using Attention-Joints Graph Convolutional Neural Networks(19年ieee上的一篇)这篇论文的翻译,可能在有些地方自己翻译的不是很到位或者出现一定的错误,希望大佬能指出。ABSTRACT 人体骨骼包含着重要的动作信息,因此将骨骼纳入人体动作识别中是非常直观的。人类骨骼类似于一个图形,而人体的关节和...

2020-03-09 16:26:35 512 5

原创 No default session is registered. Use `with sess.as_default()` 报错的解决

今天出现了这个报错,具体的解决方法,将sess = tf.Session()改为sess = tf.InteractiveSession(),程序可正常运行了。(我看有的博主说改为with tf.Session() as sess:也可以)出现这种情况好像是因为Session.run()和Tensor.eval()两者之间有一定的区别,sess.run()在同一步获取多个tensor...

2020-02-12 19:51:12 1242

原创 关于在ubuntu上安装NVIDIA驱动时出现的一个问题

前段时间在ubuntu16.04系统中安装NVIDIA驱动时候,进入命令行模式后,输入关闭图形化界面的命令后,会出现用户名和四个◆的一行,一开始我也不知道这是我操作正确还是错误,然后就一直等,以为等一会就好了,后来等了半天也不行,就重新退出命令行界面重新开始,可还是会出现这样的情况。后来通过问了一下其他同学,发现要在这个时候输入密码,在输入密码后就可以进行剩下的其他操作了。...

2020-01-10 10:12:18 261

原创 DMC-Net

论文题目:《DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition》(主要是翻译笔记)Abstract动作已被证明是有用的视频理解,其中动作通常用光流来表示。然而,从视频帧中处理流是非常耗时的。最近的作品直接利用压缩视频中动作的矢量和残差来代表动作,没有成本。这虽...

2019-11-10 20:40:42 942 1

翻译 Mixed Reality Martial Arts Training using Real-time 3D Human Pose Forecasting with a RGB Camera(翻译二)

Implementation本系统主要由两部分组成:单幅图像的三维姿态预测和虚拟现实中的模型拟合与碰撞检测。如图2所示,姿态预测由三个模块组成:二维姿态估计、二维姿态预测和三维姿态恢复。这三个模块在多线程计算的帮助下并行运行。3D Pose Forecasting 二维姿态估计:二维人体姿态估...

2019-11-02 23:10:53 516

翻译 Mixed Reality Martial Arts Training using Real-time 3D Human Pose Forecasting with a RGB Camera(翻译一)

这是东京工业大学关于人体动作预测的一篇论文,费劲千辛万苦终于下载下来,然后翻译一下与大家一起分享。Abstract在本文中,我们提出了一种新的混合现实武术训练系统,该系统采用基于深度学习的实时动作预测的方法。我们的训练系统是基于3D姿态估计,利用从RGB相机作为输入的残差神经网络来捕获教练的运动。头戴显示器的学生可以看到教练的虚拟模型和对他未来姿势的预测。姿态预测是基于循环网络的,为了...

2019-11-01 00:08:15 670 1

原创 LSTM与AGC-LSTM两者比较

LSTM网络是RNN网络的一个改进,解决了长期依赖问题,LSTM与标准循环神经网络RNN相比,最主要的改进就是多出了3个门控制器:输入门it,输出门ot,遗忘门ft。3个门控制器的结构都相同,主要由sigmoid函数和点积操作构成,由于sigmoid函数的取值为0~1,所以当sigmoid取值为0时表示没有信息可以通过,或者理解为将所有的记忆全部遗忘。反之,取值为1的时表示所有信息都能通过,完全保...

2019-10-09 00:10:29 1176

原创 基于骨架的动作识别AGC-LSTM网络(一)

最近自己在一边看机器学习视频的同时一边在看最近关于基于骨骼的动作识别的论文,An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition这篇是CVPR2019的一篇论文,上周把这篇论文看了一遍(差不多就是单纯的翻译了一遍),今天又没事翻看了一下,下面我把我自己在阅读的过程自己...

2019-10-02 17:59:50 6547 3

多分类模型软/硬投票预测代码

基于yolo实现多个分类模型,进行投票,确定最总图像类别。实现了软投票和硬投票两种投票策略。

2024-11-13

yolov5实现人群计数

本项目是一个使用 YOLOv5 模型实现的人群计数 Python 应用。YOLOv5 是一个流行的目标检测模型,以其速度快和准确性高而闻名。通过这个项目,你可以快速部署一个能够识别图像中人数的系统。 功能特点: 高精度人群计数:利用 YOLOv5 模型的高效目标检测能力,实现对人群的精确计数。 实时图像处理:支持从摄像头或视频文件中实时读取图像,并进行人群计数。 易于集成:代码结构清晰,易于与其他系统或应用集成。 跨平台支持:兼容主流操作系统,包括 Windows、Linux 和 macOS。 技术栈: Python:编程语言。 YOLOv5:目标检测模型。 OpenCV:用于图像处理和显示。

2024-10-21

4000多张电动车视觉识别数据集-YOLO标注:多角度电梯+室外场景

本数据集可以直接应用于室内外电动车检测项目!! 本数据集精心整理了4342张YOLO格式的电动车图像,覆盖了电梯内和室外两种复杂场景,为深度学习模型训练提供了丰富而高质量的数据资源。每一张图像都经过了细致的挑选和专业的人工标注,确保了数据的精准度和实用性。数据集中包含了电瓶车、电动自行车等多种车型,以及不同角度、不同型号和不同遮挡程度的电动车,同时引入了不同类型、不同拍摄角度的自行车作为负样本,有效减少了在实际应用场景中自行车带来的误报问题。 此外,数据集还特别涵盖了电梯内外的特定场景,为研究电动车在不同环境下的行为模式提供了宝贵的视觉信息。无论是用于学术研究还是工业应用,本数据集都能满足您对电动车检测模型训练的高标准需求。通过本数据集的训练,模型将能够更准确地识别和分类电动车,提升目标检测的效率和准确性。 本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!

2024-10-20

500张yolo格式电动车数据(电梯场景+室外场景)

本数据集可以直接应用于室内外电动车检测项目! 本数据集精心整理了500张YOLO格式的电动车图像,覆盖了电梯内和室外两种复杂场景,为深度学习模型训练提供了丰富而高质量的数据资源。每一张图像都经过了细致的挑选和专业的人工标注,确保了数据的精准度和实用性。数据集中包含了电瓶车、电动自行车等多种车型,以及不同角度、不同型号和不同遮挡程度的电动车,同时引入了不同类型、不同拍摄角度的自行车作为负样本,有效减少了在实际应用场景中自行车带来的误报问题。 此外,数据集还特别涵盖了电梯内外的特定场景,为研究电动车在不同环境下的行为模式提供了宝贵的视觉信息。无论是用于学术研究还是工业应用,本数据集都能满足您对电动车检测模型训练的高标准需求。通过本数据集的训练,模型将能够更准确地识别和分类电动车,提升目标检测的效率和准确性。 本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!本数据集可以直接应用于室内外电动车检测项目!

2024-10-20

yolov5+lprnet实现车牌检测

基于YOLOv5和LPRNet实现的车牌检测与识别系统是一个高效、准确且鲁棒性强的解决方案,适用于智能交通系统。该系统能够实时处理监控视频或图像数据,自动检测车牌位置并识别车牌号码,为交通管理提供可靠的数据支持。 项目简介: 本项目采用深度学习技术,结合了YOLOv5目标检测算法和LPRNet车牌识别算法,旨在开发一个高效、准确的车牌检测与识别系统。该系统能够适应不同光线、角度和车牌颜色等复杂环境,具有较强的鲁棒性,适用于交通监控、停车场管理、车辆识别等多种场景。 技术实现: YOLOv5用于车牌检测,它是一个先进的目标检测模型,适用于图像分割和分类任务。 LPRNet用于车牌号码识别,这是一个专门用于车牌号码识别的深度学习模型,能够准确地从图像中提取和识别车牌上的字符和数字。 系统特点: 高效性:系统能够快速处理大量图像数据,实现快速的车牌检测与识别。 准确性:通过大量数据训练和优化,系统能够准确识别出图像中的车牌区域和字符序列。 鲁棒性:系统能够适应不同环境条件,如光线变化、车牌污损、角度倾斜等。

2024-10-19

深度学习调参指南中文版

在深度学习的海洋中,调参是提升模型性能的关键。本指南从基础理论到高级技巧,为您提供全方位的深度学习调参指导。无论您是初学者还是资深研究者,都能从中获得宝贵的知识和实用的技巧。内容包括但不限于:损失函数的选择、优化器的比较、超参数的调整策略、正则化技术的应用等。通过本指南,您将学会如何高效地调整深度学习模型,以实现最佳的性能和准确性。

2024-10-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除