回溯算法

回溯算法是一种通过深度优先搜索策略解决优化问题的方法,它在遇到非最优解时会回退寻找其他可能的解。典型的回溯算法应用包括全排列、电话号码的字母组合和括号生成等。此外,回溯法也在N皇后问题中起到关键作用,用于找到所有不同的皇后放置方案,避免皇后之间的攻击。
摘要由CSDN通过智能技术生成

1.什么是回溯算法思想

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。把问题的解空间转化成了图或者树的结构表示,然后使用深度优先搜索策略进行遍历,遍历的过程中记录和寻找所有可行解或者最优解。

2.形式

void backtrack(int i,int n,....){
   
	if(i==n){
    //递归结束条件
	record answer;
	return;
	}
	for(){
     
		//在这进行一些操作
		backtrack(); 
		//在这进行回溯操作
	}
}

3.典型例子

1.全排列
题目描述:给定一个 没有重复 数字的序列,返回其所有可能的全排列。
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
分析:以[1,2,3]为例
以1开头 [1]+[2,3]→[1,2,3]and[1,3,2]
以2开头 [2]+[1,3]→[2,1,3]and[2,3,1]
以3开头 [3]+[1,2]→[3,1,2]and[3,2,1]
树状图

// 回溯代码
import java.util.ArrayList;
import java.util.List;
/*@nums表示原数组
  @len 数组长度
  @depth 先已添加的长度
  @boolean判断是否已添加 添加后改为true
  @res最终结果
 */

public class Solution {
   
    private void dfs(int[] nums, int len, int depth, 
                     List<Integer> path, boolean[] used,
                     List<List<Integer>> res) {
    
        if (depth == len) {
     //递归结束条件
            res.add(path);
            return;
        }
        // 在非叶子结点处,产生不同的分支,这一操作的语义是:在还未选择的数中依次选择一个元素作为下一个位置的元素,这显然得通过一个循环实现。
        for (int i = 0; i < len; i++) {
   
            if (!used[i]) {
   
                path.add(nums[i]);
                used[i] = true;

                dfs(nums, len, depth + 1, path, used, res);//代码在形式上对称
                // 注意:下面这两行代码发生 「回溯」,回溯发生在从 深层结点 回到 浅层结点 的过程
                used[i] = false;
                path.remove(path.size() - 1);
            }
        }
    }
}

2.电话号码的字母组合

给定一个仅包含数字 2-9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值