1.什么是回溯算法思想
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。把问题的解空间转化成了图或者树的结构表示,然后使用深度优先搜索策略进行遍历,遍历的过程中记录和寻找所有可行解或者最优解。
2.形式
void backtrack(int i,int n,....){
if(i==n){
//递归结束条件
record answer;
return;
}
for(){
//在这进行一些操作
backtrack();
//在这进行回溯操作
}
}
3.典型例子
1.全排列
题目描述:给定一个 没有重复 数字的序列,返回其所有可能的全排列。
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
分析:以[1,2,3]为例
以1开头 [1]+[2,3]→[1,2,3]and[1,3,2]
以2开头 [2]+[1,3]→[2,1,3]and[2,3,1]
以3开头 [3]+[1,2]→[3,1,2]and[3,2,1]
// 回溯代码
import java.util.ArrayList;
import java.util.List;
/*@nums表示原数组
@len 数组长度
@depth 先已添加的长度
@boolean判断是否已添加 添加后改为true
@res最终结果
*/
public class Solution {
private void dfs(int[] nums, int len, int depth,
List<Integer> path, boolean[] used,
List<List<Integer>> res) {
if (depth == len) {
//递归结束条件
res.add(path);
return;
}
// 在非叶子结点处,产生不同的分支,这一操作的语义是:在还未选择的数中依次选择一个元素作为下一个位置的元素,这显然得通过一个循环实现。
for (int i = 0; i < len; i++) {
if (!used[i]) {
path.add(nums[i]);
used[i] = true;
dfs(nums, len, depth + 1, path, used, res);//代码在形式上对称
// 注意:下面这两行代码发生 「回溯」,回溯发生在从 深层结点 回到 浅层结点 的过程
used[i] = false;
path.remove(path.size() - 1);
}
}
}
}
2.电话号码的字母组合
给定一个仅包含数字 2-9