bitset复习

9 篇文章 0 订阅
6 篇文章 0 订阅

题目:求子集的算术和的异或和

题解:

按照正常思路是维护一个dp[i],表示和为i的组合有多少个,然后如果dp[i]%2==1则ans^i就可以了··然而复杂度为sum*n,果断T

考虑用一个布尔数组表示dp[i],dp[i]为1表示和为i的组合的数量为奇数,0为偶数

然后每输入一个数x,可以用dp[i]更新dp[i+x],即dp[i+x]=(dp[i+x]+dp[i])%2,既然我们用的是布尔数组,可以利用位运算+bitset,来一次性更新所有的i而不用一一枚举sum,即dp=dp^(dp<<x).


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
#include<bitset>
using namespace std;
const int N=2e6+5;
bitset<N>dp;
int ans=0,a,tot,n;
int main()
{
  //freopen("a.in","r",stdin);
  scanf("%d",&n);  
  dp[0]=1;
  for(int i=1;i<=n;i++)
  {
    scanf("%d",&a);
    tot+=a;dp^=(dp<<a);
  }
  for(int i=0;i<=tot;i++)
    if(dp[i])  ans^=i;
  cout<<ans<<endl;
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值