题目链接:https://vjudge.net/problem/POJ-2117
题意:求去除一点后,形成的连通分支数的最大值。(使最多的网络不能跟原路线相连)
顶点u是割项当且仅满足 (1) 或 (2)时:
(1) 若u是树根,且u的孩子数 son>1 。因为没有u的后向边,以这些孩子为根的子树之间互不相连通,所以去掉u后将得到son个分支。
(2)若u不是树根,且存在树边 ( u , v ) 使low ( v ) >= dfn ( u )。low值说明以v为根的子树不能到达u的祖先也就是去掉u后不能跟原图连通。(跟割绳子一样,一条绳子割n刀会形成 (n +1) 小段)所以得到 { 这样的v的个数 + 1 }个分支。
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <stdlib.h>
using namespace std;
const int N = 1E4 + 7;
int low[N];
int dfn[N];
int cnt[N];
int par[N];
vector<int>G[N];
int index;
int root;
void Tarjan(int u, int fa)
{
low[u] = dfn[u] = ++index;
int son = 0;
int n = G[u].size();
for(int i = 0;i < n;i ++) {
int v = G[u][i];
if(v == fa) continue;
if(!dfn[v]) {
son ++;
Tarjan(v, u);
low[u] = min(low[u], low[v]);
if(u == root && son > 1 || u != root && low[v] >= dfn[u]) {
cnt[u] ++;
}
} else {
low[u] = min(low[u], dfn[v]);
}
}
}
int main()
{
int n, m;
while(~scanf("%d %d", &n, &m)) {
if(n == 0 && m == 0) break;
if(m == 0) {
printf("%d\n",n-1);
continue;
}
for(int i = 0;i <= n;i ++) cnt[i] = low[i] = dfn[i] = 0,G[i].clear();
for(int i = 1;i <= m;i ++) {
int u, v;
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
int t = 0;
int p = -1000000;
for(int i = 0;i < n;i ++) {
if(!dfn[i]) {
t ++;
index = 0;
root = i;
Tarjan(i, -1);
}
p = max(p, cnt[i]);
}
printf("%d\n", p + t);
}
return 0;
}