POJ2117 割点

题目链接:https://vjudge.net/problem/POJ-2117

题意:求去除一点后,形成的连通分支数的最大值。(使最多的网络不能跟原路线相连)

顶点u是割项当且仅满足 (1) 或 (2)时:

(1) 若u是树根,且u的孩子数 son>1 。因为没有u的后向边,以这些孩子为根的子树之间互不相连通,所以去掉u后将得到son个分支。

(2)若u不是树根,且存在树边 ( u  ,  v ) 使low ( v ) >= dfn ( u )。low值说明以v为根的子树不能到达u的祖先也就是去掉u后不能跟原图连通。(跟割绳子一样,一条绳子割n刀会形成 (n +1) 小段)所以得到 { 这样的v的个数 + 1 }个分支。


#include <stdio.h>
#include <vector>
#include <algorithm>
#include <stdlib.h>

using namespace std;


const int N = 1E4 + 7;

int low[N];
int dfn[N];
int cnt[N];
int par[N];
vector<int>G[N];
int index;
int root;

void Tarjan(int u, int fa)
{
    low[u] = dfn[u] = ++index;
    int son = 0;
    int n = G[u].size();
    for(int i = 0;i < n;i ++) {
        int v = G[u][i];
        if(v == fa) continue;
        if(!dfn[v]) {
            son ++;
            Tarjan(v, u);
            low[u] = min(low[u], low[v]);
            if(u == root && son > 1 || u != root && low[v] >= dfn[u]) {
                cnt[u] ++;
            }
        } else {
            low[u] = min(low[u], dfn[v]);
        }
    }
}


int main()
{
    int n, m;
    while(~scanf("%d %d", &n, &m)) {
        if(n == 0 && m == 0) break;
        if(m == 0) {
            printf("%d\n",n-1);
            continue;
        }
        for(int i = 0;i <= n;i ++) cnt[i] = low[i] = dfn[i] = 0,G[i].clear();
        for(int i = 1;i <= m;i ++) {
            int u, v;
            scanf("%d %d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
        int t = 0;
        int p = -1000000;
        for(int i = 0;i < n;i ++) {
            if(!dfn[i]) {
                t ++;
                index = 0;
                root = i;
                Tarjan(i, -1);
            }
            p = max(p, cnt[i]);
        }
        printf("%d\n", p + t);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值