十六届金马五校赛 L:DP求最长K倍序列

链接:https://www.nowcoder.com/acm/contest/91/L
来源:牛客网

给一个数组 a,长度为 n,若某个子序列中的和为 K 的倍数,那么这个序列被称为“K 序列”。现在要你 对数组 a 求出最长的子序列的长度,满足这个序列是 K 序列。 

输入描述:

第一行为两个整数 n, K, 以空格分隔,第二行为 n 个整数,表示 a[1] ∼ a[n],1 ≤ n ≤ 105 , 1 ≤ a[i] ≤ 109 , 1 ≤ nK ≤ 107

输出描述:

输出一个整数表示最长子序列的长度 m
示例1

输入

7 5
10 3 4 2 2 9 8

输出

6

题解:

首先是个典型的DP.

dp[i][j]表示到第i个数,相加和膜k余数为j的最长序列,则利用刷表法:

dp[i][(j+a[i])%k] = max( dp[i-1][j] + 1, dp[i-1][(j+a[i])%k]);

dp[n][0]即为结果,利用滚动数组优化即可。

#include <bits/stdc++.h>

using namespace std;

const int N = 1E7 + 7;
const int INF = 0x3f3f3f3f;
int dp[2][N];
int a[N];
int main()
{
    int n, k;
    scanf("%d %d", &n, &k);
    for(int i = 1;i <= n; i ++) scanf("%d", &a[i]), a[i]%=k;
    for(int i = 0;i <= k; i++) {
        dp[0][i] = dp[1][i] = -INF;
    }
    int f = 0;
    dp[f][0] = 0;
    for(int i = 1;i <= n;i ++) {
        f ^= 1;
        for(int j = 0;j < k;j ++) {
            dp[f][(a[i]+j)%k] = max(dp[f^1][j] + 1, dp[f^1][(a[i]+j)%k]) ;
        }
    }
    printf("%d\n", dp[f][0]);
    return 0;
}





阅读更多
个人分类: DP 区间DP
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭