来源:牛客网
输入描述:
第一行为两个整数 n, K, 以空格分隔,第二行为 n 个整数,表示 a[1] ∼ a[n],1 ≤ n ≤ 105 , 1 ≤ a[i] ≤ 109 , 1 ≤ nK ≤ 107
输出描述:
输出一个整数表示最长子序列的长度 m
输入
7 5 10 3 4 2 2 9 8
输出
6
题解:
首先是个典型的DP.
dp[i][j]表示到第i个数,相加和膜k余数为j的最长序列,则利用刷表法:
dp[i][(j+a[i])%k] = max( dp[i-1][j] + 1, dp[i-1][(j+a[i])%k]);
dp[n][0]即为结果,利用滚动数组优化即可。
#include <bits/stdc++.h> using namespace std; const int N = 1E7 + 7; const int INF = 0x3f3f3f3f; int dp[2][N]; int a[N]; int main() { int n, k; scanf("%d %d", &n, &k); for(int i = 1;i <= n; i ++) scanf("%d", &a[i]), a[i]%=k; for(int i = 0;i <= k; i++) { dp[0][i] = dp[1][i] = -INF; } int f = 0; dp[f][0] = 0; for(int i = 1;i <= n;i ++) { f ^= 1; for(int j = 0;j < k;j ++) { dp[f][(a[i]+j)%k] = max(dp[f^1][j] + 1, dp[f^1][(a[i]+j)%k]) ; } } printf("%d\n", dp[f][0]); return 0; }