Spark on Yarn中的Executor内存设置

本文介绍了Spark在Yarn上的运行模式,重点解析了Executor内存设置,包括`spark.executor.memory`和`spark.executor.memoryOverhead`参数,以及它们如何影响Executor的JVM堆内外存分配。同时,提到了Yarn的Container内存限制和计算内存的分配策略。
摘要由CSDN通过智能技术生成

目录

背景介绍

Yarn

Spark

Spark on Yarn

Executor内存设置


背景介绍

Yarn

yarn是一个主从型的计算资源管理系统,包含一个ResourceManager和多个NodeManager。其中ResourceManager负责整个集群的资源调度,管理NodeManager;NodeManager负责管理单个节点。

Spark

Spark是一种分布式计算框架,可以在多种集群资源管理器上运行。Spark计算任务运行时,会首先运行一个driver,相当于计算任务的main函数。它负责计算任务的调度,driver会管理多个executor,executor上会运行具体的计算任务。

Spark on Yarn

Spark on yarn 模式有两种, yarn-client, yarn-cluster, 其中yarn-client适合测试环境, yarn-cluster适合生产环境。

Executor内存设置

Spark的executor运行在单独的JVM中。spark.executor.memory这个参量设置的就是JVM的堆内存,也是executor实际可以使用的内存。JVM本身也需要一定的内存,这部分内存的大小通过spark.executor.memoryOverhead设置。这两部分的和就是向Yarn申请的Container内存大小。spark.executor.memory
该参数用于设置每个Executor进程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT_心如止水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值