目录
背景介绍
Yarn
yarn是一个主从型的计算资源管理系统,包含一个ResourceManager和多个NodeManager。其中ResourceManager负责整个集群的资源调度,管理NodeManager;NodeManager负责管理单个节点。
Spark
Spark是一种分布式计算框架,可以在多种集群资源管理器上运行。Spark计算任务运行时,会首先运行一个driver,相当于计算任务的main函数。它负责计算任务的调度,driver会管理多个executor,executor上会运行具体的计算任务。
Spark on Yarn
Spark on yarn 模式有两种, yarn-client, yarn-cluster, 其中yarn-client适合测试环境, yarn-cluster适合生产环境。
Executor内存设置
Spark的executor运行在单独的JVM中。spark.executor.memory这个参量设置的就是JVM的堆内存,也是executor实际可以使用的内存。JVM本身也需要一定的内存,这部分内存的大小通过spark.executor.memoryOverhead设置。这两部分的和就是向Yarn申请的Container内存大小。spark.executor.memory
该参数用于设置每个Executor进程