前言·提问
- AI代指什么,AIGC呢?
- 当前市面上deepseek之外还有哪些常见的AI产品?我有什么新的发现与思考?(衍生思考与拓展)
- 如何应对当前人工智能盛行的情况?我们作为普通人是应该拥抱还是抵触还是躺平?
一、AI 和 AIGC的老生常谈
AI(人工智能) 和 AIGC(人工智能生成内容) 是两个密切相关但定义和应用场景不同的概念。以下是它们的核心区别与联系:
1. AI(人工智能,Artificial Intelligence)
定义
AI 是一个广泛的学科领域,指通过算法和系统使机器具备模拟人类智能的能力,例如学习、推理、感知、决策等。其目标是让机器完成需要人类智能的任务。
核心特点
- 范围广泛:包括机器学习、深度学习、自然语言处理(NLP)、计算机视觉、机器人技术等子领域。
- 通用性:可应用于自动驾驶、医疗诊断、金融预测、智能客服等多样化场景。
- 技术基础:依赖算法、数据、算力,通过训练模型实现智能化。
2. AIGC(人工智能生成内容,AI-Generated Content)
定义
AIGC 是 AI 的一个具体应用分支,指利用人工智能技术自动生成文本、图像、音频、视频等内容。其核心是“内容创作”,依赖生成模型(如 GPT、Stable Diffusion)实现。
核心特点
- 聚焦内容生成:直接输出可被人类消费的内容(如文章、图片、音乐)。
- 技术依赖:基于生成对抗网络(GAN)、大语言模型(LLM)、扩散模型(Diffusion)等生成式AI技术。
- 应用场景:文案创作、艺术设计、视频生成、代码编写等创意领域。
3. 核心区别
维度 | AI(人工智能) | AIGC(人工智能生成内容) |
---|---|---|
定义范围 | 广泛的学科领域和技术体系 | AI 的一个具体应用分支 |
目标 | 模拟人类智能解决复杂问题 | 生成符合需求的多模态内容 |
技术重点 | 包括感知、推理、决策等多种能力 | 聚焦生成模型(如 GPT、Diffusion) |
典型应用 | 自动驾驶、医疗诊断、推荐系统 | 文本生成、图像创作、视频合成 |
输出形式 | 可能是决策、预测、控制信号 | 直接生成人类可理解的内容(如文字、图片) |
4. 联系与依赖
- AIGC 是 AI 的子集:AIGC 依赖 AI 的基础技术(如深度学习),但专门用于内容生成。
- 技术交叉:AIGC 需要自然语言处理(NLP)、计算机视觉等 AI 技术的支持。
- 发展趋势:AIGC 的爆发(如 ChatGPT、MidJourney)推动了 AI 在创意领域的突破,但 AI 的范畴远不止于此。
5. 举例说明
-
AI 的典型应用:
- 特斯拉的自动驾驶(感知与决策)
- 医疗AI诊断肿瘤(数据分析与推理)
- 亚马逊的推荐算法(用户行为预测)
-
AIGC 的典型应用:
- ChatGPT 生成文章或对话(文本生成)
- MidJourney 创作插画(图像生成)
- AI 合成虚拟主播视频(多模态生成)
总结
- AI 是“大脑”:广义的智能能力,解决多样化问题。
- AIGC 是“笔”或“画板”:专注于用 AI 技术创造内容。
两者是包含关系,AIGC 是 AI 在内容创作领域的落地体现。
二、较为流行的几款大模型
1. DeepSeek-R1系列(深度求索)
- 官方名称:DeepSeek-R1、DeepSeek-V3
- 核心优势:低成本(训练成本仅600万美元,为OpenAI同类模型的1/27)、强化学习优化数学推理与代码生成能力、开源生态打破技术垄断。
- 最佳场景:数学计算、编程开发、自然语言推理、企业级数据查询与业务自动化。
- 参数规模:660B(DeepSeek-R1)、支持多模态扩展。
- 部署成本:API定价优势显著,支持云端与本地化部署。
- 开源策略:开源DeepSeek-R1-Zero及多个小模型,吸引全球开发者共建生态。
- 版本迭代:2025年1月发布R1系列,后续推出多模态框架Janus-Pro/Flow。
- 选择建议:适合需要高性价比推理能力的企业及开发者,尤其是数学与编程密集型场景。
2. 通义千问Qwen2.5-Max(阿里巴巴)
- 官方名称:Qwen2.5-Max
- 核心优势:数学与编程能力全球领先,硬提示(Hard Prompts)处理能力突出,支持无限长1080P视频生成。
- 最佳场景:科研计算、工业设计、视频生成、多模态内容创作。
- 参数规模:72B(数学推理模型)、7B(小尺寸高效版)。
- 部署成本:云端服务为主,专业版需较高算力支持。
- 开源策略:部分开源(如Qwen2.5-Math-PRM),提供商业化API。
- 版本迭代:2025年2月升级至Qwen2.5,新增中文视频生成功能。
- 选择建议:科研机构、视频制作公司及需要复杂任务处理的企业首选。
3. 豆包大模型1.5-Pro(字节跳动)
- 官方名称:Doubao-1.5-Pro
- 核心优势:实时语音交互能力(端到端S2S框架)、多模态融合、高性价比训练。
- 最佳场景:语音助手、实时翻译、社交娱乐(如AI算命、情感陪伴)。
- 参数规模:等效7倍激活参数的稀疏MoE架构,优化计算效率。
- 部署成本:低时延云端部署,适合移动端集成。
- 开源策略:闭源为主,提供API及SDK接入。
- 版本迭代:2025年1月发布1.5-Pro,同步推出AI Coding产品Trae.ai。
- 选择建议:C端应用开发者、智能硬件厂商(如OPPO Find N5已接入)。
4. ChatGLM3-6B(智谱AI & 清华大学)
- 官方名称:ChatGLM3-6B
- 核心优势:中文优化能力强、支持本地化部署、结合LangChain构建垂直领域知识库。
- 最佳场景:企业内部知识管理、教育问答、政府文档处理。
- 参数规模:6B(适合中小型算力)。
- 部署成本:低至两张A4000显卡(16G显存)即可运行。
- 开源策略:完全开源,提供训练示例与Web Demo。
- 版本迭代:2024年底发布第三代,增强长文本处理能力。
- 选择建议:中小企业及教育机构,需低成本中文场景适配的优选。
5. GPT-4.5 Turbo(OpenAI)
- 官方名称:GPT-4.5 Turbo
- 核心优势:多模态推理、高泛化性、插件生态丰富。
- 最佳场景:创意写作、跨语言翻译、复杂问题咨询。
- 参数规模:未公开(推测超万亿级)。
- 部署成本:云端API费用较高,适合预算充足的用户。
- 开源策略:闭源,仅提供商业化接口。
- 版本迭代:2025年初推出轻量级o3-mini对抗国产模型,但核心能力未超越Qwen2.5。
- 选择建议:全球化企业及需要高通用性的开发者,需注意数据隐私合规问题。
6. Claude-3.5-Sonnet(Anthropic)
- 官方名称:Claude-3.5-Sonnet
- 核心优势:伦理对齐严格、长上下文处理(400万token输入)。
- 最佳场景:法律分析、医疗咨询、长文档摘要。
- 参数规模:未公开,侧重稀疏化架构优化。
- 部署成本:中高端云端服务,适合专业领域。
- 开源策略:闭源,提供企业级定制服务。
- 版本迭代:2025年1月升级至3.5,强化逻辑反思能力。
- 选择建议:需高安全性与合规性的金融、医疗行业。
总结与建议:
- 企业级应用:DeepSeek-R1(高性价比推理)、Qwen2.5-Max(科研与工业)。
- 开发者与中小企业:ChatGLM3-6B(中文本地化)、豆包1.5-Pro(语音交互)。
- 全球化需求:GPT-4.5 Turbo(通用性强)、Claude-3.5(伦理合规)。
- 开源生态建设:优先DeepSeek与ChatGLM3,兼顾技术可控性与社区支持。
三、DeepSeek中“深度思考”与“联网搜索”
1. 核心区别
维度 | 深度思考 | 联网搜索 |
---|---|---|
功能定位 | 基于模型内化知识的推理与综合分析 | 实时获取互联网最新信息与数据 |
数据依赖 | 依赖预训练知识库(截止至训练时间点) | 实时抓取最新网页、新闻、数据库内容 |
响应速度 | 较快(直接调用模型能力) | 较慢(需联网检索并整合结果) |
适用场景 | 理论分析、逻辑推导、抽象问题解决 | 事实核查、时效性信息查询、动态数据获取 |
2. 各自优势详解
1. 深度思考的优势
-
复杂问题解构能力
- 示例:若用户提问“如何从哲学角度理解人工智能的伦理困境?”,模型会调用哲学史、伦理学框架(如康德义务论、功利主义)和AI技术知识,生成结构化分析。
- 优势:无需依赖外部信息,可对抽象概念进行多角度关联(如将“AI自主决策”类比于“自由意志”讨论)。
-
知识整合与创新联结
- 示例:回答“量子计算对密码学的影响”时,可结合量子力学原理(叠加态、纠缠)、传统加密算法(RSA、ECC)和未来场景推演。
- 优势:突破单一领域限制,实现跨学科逻辑串联。
-
可控性与安全性
- 示例:处理敏感话题(如种族歧视分析)时,模型通过预训练的道德对齐机制规避偏见输出。
- 优势:输出内容经过严格过滤,避免实时网络中的不可控信息干扰。
2. 联网搜索的优势
-
时效性信息覆盖
- 示例:查询“2024年巴黎奥运会最新奖牌榜”时,直接抓取奥委会官网或权威媒体数据。
- 优势:突破模型知识截止时间(如GPT-3.5数据截至2022年1月),确保结果实时准确。
-
海量细节补充
- 示例:回答“某小众学术论文的核心观点”时,可定向爬取arXiv、ResearchGate等平台内容。
- 优势:弥补模型对长尾知识的覆盖不足(如最新科研进展或地方性政策)。
-
多源验证与可信度提升
- 示例:分析“某公司财务造假事件”时,交叉对比SEC文件、媒体报道和行业分析报告。
- 优势:通过数据源多元化减少单一信源的偏差风险。
3. 协同应用场景
-
复合型问题的高效解决
- 案例:用户提问“马斯克的脑机接口公司Neuralink最新进展及其技术伦理争议”。
- 协作流程:
- 联网搜索获取Neuralink官网声明、FDA审批状态、媒体报道;
- 深度思考整合神经科学原理、伦理学理论(如人体实验规范),结合搜索数据生成风险-收益分析框架。
-
动态知识库更新
- 案例:用户要求“用2023年诺贝尔经济学奖理论分析中国房价趋势”。
- 协作流程:
- 联网搜索提取诺奖得主Claudia Goldin的“性别薪酬差距”研究;
- 深度思考将理论与中国经济数据(如女性购房比例上升)关联,构建本土化解释模型。
4. 选择建议
-
优先使用深度思考的场景:
- 需要理论推演(如数学证明、哲学思辨)
- 涉及敏感或争议性话题(确保内容安全可控)
- 依赖跨领域知识整合(如“区块链如何赋能碳中和”)
-
优先使用联网搜索的场景:
- 查询实时事件(如股市行情、突发新闻)
- 获取专业细节(如某型号芯片制程参数)
- 验证事实性陈述(如“某国最新移民政策条款”)
总结:
深度思考是模型的“内功”,擅长逻辑编织与知识创新;联网搜索则是“外延”,突破时空限制获取鲜活信息。二者的本质差异在于知识生成方式(内生推理 vs 外源抓取),而最佳实践往往需要两者的动态配合——如同中医“辨证施治”,根据问题性质灵活调用工具,实现智能服务的精准化与深度化。
四、个人小结(拥抱AI)
-
人工智能的快速发展已成为不可逆转的趋势,我们必须认真对待这一变革。作为普通用户,我深刻感受到AI带来的广泛冲击。这种冲击不仅体现在各大自媒体平台的推广和营销中,也渗透到日常生活的方方面面,甚至在与周围人的交流中,AI也成为了频繁提及的话题。这种无处不在的影响,让我意识到AI正在深刻改变我们的生活和工作方式。
-
作为互联网行业的开发人员,面对新兴技术的冲击,最好的态度是主动拥抱变革,而非畏惧被淘汰。正如历史上每一次产业升级与变革一样,人工智能的崛起既是挑战,也是机遇。应当积极利用这些新技术,提升工作效率和质量,同时优化学习和工作方式,让自己更好地适应未来的发展趋势。通过科学合理地运用这些工具,我不仅能跟上时代的步伐,还能在变革中找到新的成长空间,为未来的职业发展奠定坚实基础。