python sklearn中metrics.accuracy_score()的参数

该博客介绍了sklearn.metrics.accuracy_score的用法,重点在于normalize参数的影响。当normalize为True时,返回的是正确分类的比例,即准确率;若设置为False,则返回正确分类的样本数。通过示例代码展示了在不同设置下的返回结果,帮助读者更好地理解和应用该评估指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)

normalize:默认值为True,返回正确分类的比例;如果为False,返回正确分类的样本数

 

代码:

>>>import numpy as np
>>>from sklearn.metrics import accuracy_score
>>>y_pred = [0, 2, 1, 3]
>>>y_true = [0, 1, 2, 3]
>>>accuracy_score(y_true, y_pred)
0.5
>>>accuracy_score(y_true, y_pred, normalize=False)
2

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值