顺序表应用4-2:元素位置互换之逆置算法(数据改进)

Problem Description

一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),设计一个时间复杂度为O(N)、空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:交换操作会有多次,每次交换都是在上次交换完成后的顺序表中进行。

Input

第一行输入整数len(1<=len<=1000000),表示顺序表元素的总数;

第二行输入len个整数,作为表里依次存放的数据元素;

第三行输入整数t(1<=t<=30),表示之后要完成t次交换,每次均是在上次交换完成后的顺序表基础上实现新的交换;

之后t行,每行输入一个整数m(1<=m<=len),代表本次交换要以上次交换完成后的顺序表为基础,实现前m个元素与后len-m个元素的交换;

Output

输出一共t行,每行依次输出本次交换完成后顺序表里所有元素。

Example Input
10
1 2 3 4 5 6 7 8 9 -1
3
2
3
5
Example Output
3 4 5 6 7 8 9 -1 1 2
6 7 8 9 -1 1 2 3 4 5
1 2 3 4 5 6 7 8 9 -1
 

#include<stdio.h> #define MAXSIZE 100000 typedef int ElementType ; typedef struct node {     ElementType data[MAXSIZE] ;     int length; }sq; void create (sq * l, int n) {     int i;     for(i=0;i<n;i++)     {         scanf("%d",&l->data[i]);     }     l->length=n-1; } void invert (int left, int right ,sq * l) {     int i,j;     int tmp;     i=left;   j=right;     for(;i<j;i++,j--)     {         tmp=l->data[i];         l->data[i]=l->data[j];         l->data[j]=tmp;     } } void exchange (sq * l, int k) {     invert(0,l->length,l);     invert(0,l->length-k,l);     invert(l->length-k+1,l->length,l); } void show(sq * l) {     int i;     for(i=0;i<=l->length;i++)     {         if(i!=l->length)             printf("%d ",l->data[i]);         else             printf("%d\n",l->data[i]);     } } int main() {     int n, m;     int k;     sq l;     scanf("%d",&n);     create(&l, n);     scanf("%d",&m);     while(m--)     {         scanf("%d",&k);         exchange(&l,k);         show(&l);     }     return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值