Problem Description
一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),设计一个时间复杂度为O(N)、空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:交换操作会有多次,每次交换都是在上次交换完成后的顺序表中进行。
Input
第一行输入整数len(1<=len<=1000000),表示顺序表元素的总数;
第二行输入len个整数,作为表里依次存放的数据元素;
第三行输入整数t(1<=t<=30),表示之后要完成t次交换,每次均是在上次交换完成后的顺序表基础上实现新的交换;
之后t行,每行输入一个整数m(1<=m<=len),代表本次交换要以上次交换完成后的顺序表为基础,实现前m个元素与后len-m个元素的交换;
Output
输出一共t行,每行依次输出本次交换完成后顺序表里所有元素。
Example Input
10
1 2 3 4 5 6 7 8 9 -1
3
2
3
5
Example Output
3 4 5 6 7 8 9 -1 1 2
6 7 8 9 -1 1 2 3 4 5
1 2 3 4 5 6 7 8 9 -1
#include<stdio.h> #define MAXSIZE 100000 typedef int ElementType ; typedef struct node { ElementType data[MAXSIZE] ; int length; }sq; void create (sq * l, int n) { int i; for(i=0;i<n;i++) { scanf("%d",&l->data[i]); } l->length=n-1; } void invert (int left, int right ,sq * l) { int i,j; int tmp; i=left; j=right; for(;i<j;i++,j--) { tmp=l->data[i]; l->data[i]=l->data[j]; l->data[j]=tmp; } } void exchange (sq * l, int k) { invert(0,l->length,l); invert(0,l->length-k,l); invert(l->length-k+1,l->length,l); } void show(sq * l) { int i; for(i=0;i<=l->length;i++) { if(i!=l->length) printf("%d ",l->data[i]); else printf("%d\n",l->data[i]); } } int main() { int n, m; int k; sq l; scanf("%d",&n); create(&l, n); scanf("%d",&m); while(m--) { scanf("%d",&k); exchange(&l,k); show(&l); } return 0; }