最短路径

Problem Description

为了准备一年一度的校赛,大家都在忙着往赛场搬运东西,比如气球什么的。这时 YY 也没有闲着,他也加入了搬运工的行列。已知学校有 N 个路口和 M 条路,YY 并不是把东西直接搬到赛场,而是从 S 路口搬运到 T 路口。由于 YY 非常懒而且他有轻度强迫症。所以他要走的路需要尽可能的短,并且走路径 X 的倍数。

Input

输入的第一行为一个正整数T(1 T 20),代表测试数据组数。

对于每组测试数据:

输入的第一行为两个正整数 N M1 N 100, 1 M 10000)。

接下来M行每行三个正整数 UVW0 U, V < N, 0 W 230 ),代表有一条从UV的长度为W有向路径

最后一行为三个正整数ST X0 S, T < N, 1 X 10)。

Output

对于每组测试数据,输出满足条件的从 S T 的最短路径。如果从 S T 不可达,或者无法满足路径数是 X 的倍数,输出No Answer!”(不包含引号)

注意:64-bit 整型请使用 long long 来定义,并且使用 %lld cincout 来输入输出,请不要使用 __int64 %I64d

Example Input
2
2 1
0 1 1
0 1 2
3 2
0 1 1
1 2 1
0 2 2
Example Output
No Answer!
2
SPFA算法:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 10010
const long long max=9187201950435737471;
struct node
{
    int u;
    int v;
    long long w;
    int next;
}map[maxn];
int queue[maxn];
long long dist[maxn][12];
int book[maxn];
int head[maxn];
int front,rear,cnt,n;

void add(int u,int v,long long w)
{
    map[cnt].u=u;
    map[cnt].v=v;
    map[cnt].w=w;
    map[cnt].next=head[u];
    head[u]=cnt++;
}

void spfa(int s,int x)
{
    int i,j,u,v;
    long long w;
    dist[s][0]=0;
    book[s]=1;
    rear=(rear+1)%maxn;
    queue[rear]=s;
    while(front!=rear)
    {
        front=(front+1)%maxn;
        u=queue[front];
        book[u]=0;
        for(i=head[u];i!=-1;i=map[i].next)
        {
            v=map[i].v;
            w=map[i].w;
            for(j=0;j<x;j++)
            {
                if(dist[u][j]<max&&dist[v][(j+1)%x]>dist[u][j]+w)
                {
                    dist[v][(j+1)%x]=dist[u][j]+w;
                    if(!book[v])
                    {
                        book[v]=1;
                        rear=(rear+1)%maxn;
                        queue[rear]=v;
                    }
                }
            }
        }
    }
}

int main()
{
    int i,tt,m,u,v,s,t,x;
    long long w;
    scanf("%d",&tt);
    while(tt--)
    {
        cnt=front=rear=0;
        memset(head,-1,sizeof(head));
        memset(book,0,sizeof(book));
        memset(dist,max,sizeof(dist));
        scanf("%d%d",&n,&m);
        while(m--)
        {
            scanf("%d %d %lld",&u,&v,&w);
            add(u,v,w);
        }
        scanf("%d%d%d",&s,&t,&x);
        spfa(s,x);
        if(dist[t][0]==max)
        {
            printf("No Answer!\n");
        }
        else
        {
            printf("%lld\n",dist[t][0]);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值