Problem Description
为了准备一年一度的校赛,大家都在忙着往赛场搬运东西,比如气球什么的。这时 YY 也没有闲着,他也加入了搬运工的行列。已知学校有 N 个路口和 M 条路,YY 并不是把东西直接搬到赛场,而是从 S 路口搬运到 T 路口。由于 YY 非常懒而且他有轻度强迫症。所以他要走的路需要尽可能的短,并且走过路径的数目要为 X 的倍数。
Input
输入的第一行为一个正整数T(1 ≤ T ≤ 20),代表测试数据组数。
对于每组测试数据:
输入的第一行为两个正整数 N 和 M(1 ≤ N ≤ 100, 1 ≤ M ≤ 10000)。
接下来M行每行三个正整数 U、V、W(0 ≤ U, V < N, 0 ≤ W ≤ 230 ),代表有一条从U到V的长度为W的有向路径。
最后一行为三个正整数S、T 、X(0 ≤ S, T < N, 1 ≤ X ≤ 10)。
Output
对于每组测试数据,输出满足条件的从 S 到 T 的最短路径。如果从 S 到 T 不可达,或者无法满足路径数是 X 的倍数,输出“No Answer!”(不包含引号)。
注意:64-bit 整型请使用 long long 来定义,并且使用 %lld 或 cin、cout 来输入输出,请不要使用 __int64 和 %I64d。
Example Input
2
2 1
0 1 1
0 1 2
3 2
0 1 1
1 2 1
0 2 2
Example Output
No Answer!
2
SPFA算法:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 10010
const long long max=9187201950435737471;
struct node
{
int u;
int v;
long long w;
int next;
}map[maxn];
int queue[maxn];
long long dist[maxn][12];
int book[maxn];
int head[maxn];
int front,rear,cnt,n;
void add(int u,int v,long long w)
{
map[cnt].u=u;
map[cnt].v=v;
map[cnt].w=w;
map[cnt].next=head[u];
head[u]=cnt++;
}
void spfa(int s,int x)
{
int i,j,u,v;
long long w;
dist[s][0]=0;
book[s]=1;
rear=(rear+1)%maxn;
queue[rear]=s;
while(front!=rear)
{
front=(front+1)%maxn;
u=queue[front];
book[u]=0;
for(i=head[u];i!=-1;i=map[i].next)
{
v=map[i].v;
w=map[i].w;
for(j=0;j<x;j++)
{
if(dist[u][j]<max&&dist[v][(j+1)%x]>dist[u][j]+w)
{
dist[v][(j+1)%x]=dist[u][j]+w;
if(!book[v])
{
book[v]=1;
rear=(rear+1)%maxn;
queue[rear]=v;
}
}
}
}
}
}
int main()
{
int i,tt,m,u,v,s,t,x;
long long w;
scanf("%d",&tt);
while(tt--)
{
cnt=front=rear=0;
memset(head,-1,sizeof(head));
memset(book,0,sizeof(book));
memset(dist,max,sizeof(dist));
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d %d %lld",&u,&v,&w);
add(u,v,w);
}
scanf("%d%d%d",&s,&t,&x);
spfa(s,x);
if(dist[t][0]==max)
{
printf("No Answer!\n");
}
else
{
printf("%lld\n",dist[t][0]);
}
}
return 0;
}