第KI个无平方因子数

8 篇文章 0 订阅
#include<iostream>
using namespace std;
//求第ki的无平方因子数1<=ki<=10e9 
//在2*ki+1的范围内必定能找到第ki个无平方因子数
//故莫比乌斯反演函数的自变量的范围为sqrt(2*ki+1)=10e5 
#define N 100007
int prime[N];
int primesize;
int flag[N];
int u[N];
void get_prime(int x)
{
	u[1]=1;
	for(int i=2;i<=x;++i)
	{
		if(flag[i]==0)
		{
			prime[primesize++]=i;
			u[i]=-1;
		}
		for(int j=0;j<primesize;++j)
		{
			if(i*prime[j]>x) break;
			flag[i*prime[j]]=1;
			if(i%prime[j]==0) break;
			else u[i*prime[j]]=-u[i];
			
		}
	}
}

long long cal(long long x)
{
	long long ans=0;
	for(int i=1;i*i<=x;++i)
	{
		ans+=u[i]*(x/(i*i));//莫比乌斯函数*个数 
	}
	return ans;
}


int main()
{
	get_prime(100000);
	int ki;
	while(cin>>ki)
	{
		long long l=1,r=2*ki+1;
		while(l<r)//二分 
		{
			long long mid=(l+r)>>1;
			if(cal(mid)<ki)
				l=mid+1;
			else
				r=mid;
		}
		cout<<l<<endl;
	}
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值