如何让大模型的回复跟之前的对话连贯起来?

要让大模型的回复在对话中保持连贯性,需解决 短期记忆(当前对话)和 长期记忆(历史对话)问题。以下是技术方案和工程实践:


一、短期连贯性:维护对话上下文

1. 上下文拼接(最基础方法)
  • 实现方式
    将历史对话拼接为单个Prompt发送给模型:
    history = [
        ("用户", "推荐一款适合编程的笔记本"),
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java干货仓库

觉得写的不错,就给博主投币吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值