PAT 1104 Sum of Number Segments python解法

本文解析了一道算法题目,要求计算给定正数序列的所有连续子序列(段)的总和。通过观察序列{0.1,0.2,0.3,0.4}

1104 Sum of Number Segments (20 分)
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) and (0.4).

Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.

Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105​​ . The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.

Output Specification:
For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.

Sample Input:
4
0.1 0.2 0.3 0.4
Sample Output:
5.00

题意:给出一个序列,求出它的所有段总和(段:连续的子序列)。比如,给定序列{0.1,0.2,0.3,0.4},求出10个段:(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) 和 (0.4).然后求和: 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0,注意要保留2位小数,最终结果是5.00

解题思路:通过找规律,可以发现,0.1出现了4次,0.2出现了6次,0.3出现了6次,0.4出现了4次,结果就是0.1*4+0.2*6+0.3*6+0.4*4=5.00。如果扩展到n个数的序列,可以发现,第i个数出现了i*(n+1-i)次(如:0.1出现了1*4次,0.2出现了2*3次,0.3出现了3*2次,0.4出现了4*1次),因为索引从0开始,所以代码中是(n-i)*(i+1)次,接下来只需要求和就行了。

n = int(input())
l = list(map(float,input().split()))
s = 0
for i in range(len(l)):
        s += l[i]*(n-i)*(i+1)
print('%.2f'%s)
# clm_generator/excel_to_clm.py import logging import os import sys from datetime import datetime import re import json from pathlib import Path from openpyxl import load_workbook import xlrd from jinja2 import Template from collections import defaultdict from utils import resource_path, get_output_dir from pathlib import Path # ------------------------------- # 日志配置 # ------------------------------- PROJECT_ROOT = Path(__file__).parent.resolve() LOG_DIR = PROJECT_ROOT / "output" / "log" LOG_DIR.mkdir(parents=True, exist_ok=True) LOG_FILE = LOG_DIR / f"excel_to_clm_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log" class ExcelToCLMConverter: def __init__(self, config_path="config/config.json", locale_display_name=None, locale_names_map=None): """ Args: config_path: 配置文件路径 locale_display_name: 兼容旧逻辑,默认 DEFAULT 名称(如 US) locale_names_map: 新增参数,用于设置每个 locale_target 的 assigned_locale 示例: { "locale_2g_idx": "us", "locale_2g_ht_idx": "us_ht", "locale_5g_idx": "eu_5g", ... } """ self.logger = logging.getLogger(__name__) self.logger.info("初始化完成") self.last_config = None self.used_ranges_by_band = { "2g": [], "5g": [], "6g": [] } # === Step 1: 加载配置文件 === self.config_file_path = resource_path(config_path) if not os.path.exists(self.config_file_path): raise FileNotFoundError(f"配置文件不存在: {self.config_file_path}") with open(self.config_file_path, 'r', encoding='utf-8') as f: self.config = json.load(f) self.logger.info(f" 配置文件已加载: {self.config_file_path}") # === Step 2: 处理 target_c_file === rel_c_path = self.config.get("target_c_file", "input/wlc_clm_data_6726b0.c") self.target_c_file = resource_path(rel_c_path) if not os.path.exists(self.target_c_file): raise FileNotFoundError(f"配置中指定的 C 源文件不存在: {self.target_c_file}") self.logger.info(f" 已定位目标 C 文件: {self.target_c_file}") # === Step 3: 初始化输出目录 === output_dir = self.config.get("output_path", "output") self.output_dir = resource_path(output_dir) Path(self.output_dir).mkdir(parents=True, exist_ok=True) # 确保存在 self.logger.info(f" 输出目录: {self.output_dir}") # === Step 4: 更新 locale_targets from locale_names_map === if locale_names_map and isinstance(locale_names_map, dict): updated_count = 0 for tgt in self.config.get("locale_targets", []): enum_key = tgt.get("enum") new_locale = locale_names_map.get(enum_key) if new_locale is not None: old_locale = tgt.get("assigned_locale") if old_locale != new_locale: tgt["assigned_locale"] = new_locale self.logger.info(f" 更新 {enum_key}: '{old_locale}' → '{new_locale}'") updated_count += 1 if updated_count > 0: # 写回 config.json try: with open(self.config_file_path, 'w', encoding='utf-8') as f: json.dump(self.config, f, indent=4, ensure_ascii=False) self.logger.info(f" 已保存 {updated_count} 个 assigned_locale 到 config.json") except Exception as e: self.logger.info(f" 写入 config.json 失败: {e}") # === Step 5: 设置默认 fallback 显示名(兼容旧逻辑)=== first_target = self.config.get("locale_targets", [{}])[0] fallback_locale = first_target.get("assigned_locale", "DEFAULT") self.locale_name = fallback_locale self.locale_display_name = ( locale_display_name or fallback_locale.replace('-', '_') ) # === Step 6: channel_set_map 加载 === persisted_map = self.config.get("channel_set_map") if persisted_map is None: raise KeyError("配置文件缺少必需字段 'channel_set_map'") if not isinstance(persisted_map, dict): raise TypeError(f"channel_set_map 必须是字典类型,当前类型: {type(persisted_map)}") self.channel_set_map = {str(k): int(v) for k, v in persisted_map.items()} self.logger.info(f" 成功加载 channel_set_map (共 {len(self.channel_set_map)} 项)") # === 初始化数据容器 === self.tx_power_data = [] self.tx_limit_entries = [] self.eirp_entries = [] self.global_ch_min = None self.global_ch_max = None self.generated_ranges = [] self.per_band_results = [] # 存放每个 sheet 的解析结果 def reset(self): """重置所有运行时数据,便于多次生成""" self.tx_limit_entries.clear() self.eirp_entries.clear() self.used_ranges.clear() self.tx_power_data.clear() # 同步清空 self.generated_ranges.clear() self.used_ranges_by_band = {"2g": [], "5g": [], "6g": []} # ✅ 重置类 self.last_config = None self.logger.info(" 所有生成数据已重置") self.logger.info(f" 初始化完成。目标C文件: {self.target_c_file}") self.logger.info(f" 输出目录: {self.output_dir}") self.logger.info(f" Locale ID: {self.locale_name}") @property def all_used_ranges(self): """返回所有已使用的 RANGE 宏(跨频段合并+去重)""" all_ranges = [] for band_list in self.used_ranges_by_band.values(): all_ranges.extend(band_list) return sorted(set(all_ranges)) # 去重排序 # ==================== 新增工具方法:大小写安全查询 ==================== def _ci_get(self, data_dict, key): """ Case-insensitive 字典查找 """ for k, v in data_dict.items(): if k.lower() == key.lower(): return v return None def _ci_contains(self, data_list, item): """ Case-insensitive 判断元素是否在列表中 """ return any(x.lower() == item.lower() for x in data_list) def parse_mode_cell(self, cell_value): # self.logger.info(" 正在执行 parse_mode_cell()...") # self.logger.info(" ...") if not cell_value: return None val = str(cell_value).strip() val = re.sub(r'\s+', ' ', val.replace('\n', ' ').replace('\r', ' ')) val_upper = val.upper() self.logger.info(f" 解析模式单元格: '{val}'") found_modes = [] bandwidth = None # === Step 1: 提取带宽 (20/40/80/160/320) === bw_match = re.search(r'(20|40|80|160|320)\s*(?:MHZ|M)?\b', val_upper) if bw_match: bandwidth = bw_match.group(1) else: # 尾部数字 fallback: HT40 → 40 tail_num = re.search(r'(20|40|80|160|320)(?![0-9])', val_upper) if tail_num: bandwidth = tail_num.group(1) if not bandwidth: # 再次 fallback:检查是否有任何带宽数字出现 all_bws = [b for b in ['20', '40', '80', '160', '320'] if b in val_upper] bandwidth = max(all_bws, key=int) if all_bws else '20' # === Step 2: 拆表达式 === # 支持多种隔符:/, \, |, 空格等 tokens = re.split(r'[/\\|+\s]+', val_upper) tokens = [t.strip() for t in tokens if t.strip()] # 如果原始字符串本身就是一个整体词(如 "11AC"),也作为一个 token if not tokens: tokens = [val_upper] # === Step 3: 定义模式关键词映射(支持前缀匹配)=== mode_indicators = [ ('VHT', '11AC'), ('11AC', '11AC'), ('HE', '11AX'), # 注意:不能写 '^HE$',否则 HE20 不会被识别 ('11AX', '11AX'), ('BE', '11BE'), # BE320、BE20 都能命中 ('11BE', '11BE'), ('EHT', '11BE'), ('HT', '11N'), ('11N', '11N'), ('11A', '11A'), ('11G', '11G'), ('DSSS', '11B'), ('CCK', '11B'), ('11B', '11B'), ] # === Step 4: 遍历所有 token,进行部包含或前缀匹配 === for token in tokens: matched = False for pattern, canonical in mode_indicators: # 使用 re.search 而非 fullmatch,支持子串匹配 if re.search(pattern, token): if canonical not in found_modes: found_modes.append(canonical) matched = True break # 找到就跳出,避免重复添加 # === Step 5: 特殊情况补全:比如 "11AC/AX" → 应该两个都识别 === full_str_clean = re.sub(r'[^A-Z0-9]', '', val_upper) # 去除非字母数字 if '11AC' in full_str_clean and 'AX' in val_upper and '11AX' not in found_modes: found_modes.append('11AX') if '11AX' in full_str_clean and 'BE' in val_upper and '11BE' not in found_modes: found_modes.append('11BE') # 排序统一输出顺序(可选) order = {'11B': 0, '11G': 1, '11A': 2, '11N': 3, '11AC': 4, '11AX': 5, '11BE': 6} found_modes.sort(key=lambda x: order.get(x, 99)) # === Step 6: 最终校验 === if not found_modes: self.logger.info(f" 无法识别物理模式: '{cell_value}'") return None self.logger.info(f" ✓ 解析成功 → 模式={found_modes}, 带宽={bandwidth}MHz") return { "phy_mode_list": found_modes, "bw": bandwidth } def format_phy_mode(self, mode: str) -> str: """ 自定义物理层模式输出格式: - 11B/G/N 输出为小写:11b / 11g / 11n - 其他保持原样(如 11AC, 11BE) """ return { '11A': '11a', '11B': '11b', '11G': '11g', '11N': '11n' }.get(mode, mode) def col_to_letter(self, col): col += 1 result = "" while col > 0: col -= 1 result = chr(col % 26 + ord('A')) + result col //= 26 return result def is_valid_power(self, value): try: float(value) return True except (ValueError, TypeError): return False def get_cell_value(self, ws_obj, row_idx, col_idx): fmt = ws_obj["format"] if fmt == "xls": return str(ws_obj["sheet"].cell_value(row_idx, col_idx)).strip() else: cell = ws_obj["sheet"].cell(row=row_idx + 1, column=col_idx + 1) val = cell.value return str(val).strip() if val is not None else "" def find_table_header_row(self, ws_obj): """查找包含 'Mode' 和 'Rate' 的表头行""" fmt = ws_obj["format"] ws = ws_obj["sheet"] for r in range(15): mode_col = rate_col = None if fmt == "xlsx": if r + 1 > ws.max_row: continue for c in range(1, ws.max_column + 1): cell = ws.cell(row=r + 1, column=c) if not cell.value: continue val = str(cell.value).strip() if val == "Mode": mode_col = c elif val == "Rate": rate_col = c if mode_col and rate_col and abs(mode_col - rate_col) == 1: self.logger.info(f" 找到表头行: 第 {r+1} 行") return r, mode_col - 1, rate_col - 1 # 转为 0-based else: if r >= ws.nrows: continue for c in range(ws.ncols): val = ws.cell_value(r, c) if not val: continue val = str(val).strip() if val == "Mode": mode_col = c elif val == "Rate": rate_col = c if mode_col and rate_col and abs(mode_col - rate_col) == 1: self.logger.info(f" 找到表头行: 第 {r+1} 行") return r, mode_col, rate_col return None, None, None def find_auth_power_above_row(self, ws_obj, start_row): """查找 '认证功率' 所在的合并单元格及其列范围""" fmt = ws_obj["format"] ws = ws_obj["sheet"] self.logger.info(f" 开始向上查找 '认证功率',扫描第 0 ~ {start_row} 行...") if fmt == "xlsx": # xlsx 格式:使用 openpyxl 处理合并单元格 for mr in ws.merged_cells.ranges: top_left = ws.cell(row=mr.min_row, column=mr.min_col) val = str(top_left.value) if top_left.value else "" if "证功率" in val or "Cert" in val: r_idx = mr.min_row - 1 # 转为0基索引 if r_idx <= start_row: start_col = mr.min_col - 1 end_col = mr.max_col - 1 self.logger.info(f" 发现合并单元格含 '证功率': '{val}' → {self.col_to_letter(start_col)}{mr.min_row}") return start_col, end_col, r_idx # fallback:搜索普通单元格 for r in range(start_row + 1): for c in range(1, ws.max_column + 1): cell = ws.cell(row=r + 1, column=c) if cell.value and ("证功率" in str(cell.value)): self.logger.info(f" 普通单元格发现 '证功率': '{cell.value}' @ R{r + 1}C{c}") return c - 1, c - 1, r else: # fmt == "xls",使用 xlrd 读取 .xls 文件 from xlrd import Book, Cell # 第一步:检查合并单元格 if hasattr(ws, 'merged_cells'): for (rlo, rhi, clo, chi) in ws.merged_cells: # 合并区域左上角单元格为主值 cell = ws.cell(rlo, clo) val = cell.value if val and ("证功率" in str(val) or "Cert" in str(val)): if rlo <= start_row: self.logger.info(f" 发现 .xls 合并单元格含 '证功率': '{val}' → R{rlo + 1}C{clo + 1}") return clo, chi - 1, rlo # clo ~ chi-1 是实际列索引范围(chi 是开区间) # 第二步:fallback 到普通单元格搜索 for r in range(min(ws.nrows, start_row + 1)): for c in range(ws.ncols): val = ws.cell_value(r, c) if val and ("证功率" in str(val) or "Cert" in str(val)): self.logger.info(f" 发现 .xls 普通单元格 '证功率': '{val}' @ R{r + 1}C{c + 1}") return c, c, r return None, None, None def parse_ch_columns_under_auth(self, ws_obj, ch_row_idx, auth_start_col, auth_end_col, verbose=True): """ 解析指定行中 [auth_start_col, auth_end_col] 范围内的列,提取 CHx 信道编号 返回: {col_index: ch_number} 映射(便于主循环按列查找) """ fmt = ws_obj["format"] ws = ws_obj["sheet"] ch_map = {} # key: col_index, value: ch_number if verbose: self.logger.info(f"🔍 解析 CH 标题行(第 {ch_row_idx + 1} 行),列范围: Col {auth_start_col} ~ {auth_end_col}") for c in range(auth_start_col, auth_end_col + 1): val = self.get_cell_value(ws_obj, ch_row_idx, c) if not val: continue # 加强版正则:必须是 CH 开头,可接隔符,然后是数字 match = re.search(r"^CH[\s_\-]?(\d+)$", str(val).strip(), re.I) if not match: continue try: ch_num = int(match.group(1)) ch_map[c] = ch_num # ✅ 列索引 → 信道号 if verbose: self.logger.info(f" ✅ 发现 CH{ch_num} @ 第 {c + 1} 列 (Col={c})") except ValueError: continue if not ch_map: if verbose: self.logger.info("❌ 在指定区域内未找到任何有效的 CHx 列") else: chs = sorted(ch_map.values()) if verbose: self.logger.info(f"🎉 成功提取 CH{min(chs)}-{max(chs)},共 {len(chs)} 个信道") return ch_map def encode_power(self, dbm): return int(round((float(dbm) + 1.5) * 4)) def merge_consecutive_channels(self, ch_list: list, band: str = "2g", bw: str = "20") -> list: """ 合并连续信道: - 2G: 数值连续(可跨带宽) - 5G/6G: 在对应带宽的合法信道集中找相邻项进行合并 """ if not ch_list: return [] sorted_ch = sorted(set(ch_list)) # === 2G: 简单数值连续(适用于 20M/40M)=== if band.lower() == "2g": ranges = [] start = end = sorted_ch[0] for ch in sorted_ch[1:]: if ch == end + 1: end = ch else: ranges.append((start, end)) start = end = ch ranges.append((start, end)) return ranges # === 5G / 6G: 基于合法信道集的索引连续性 === elif band.lower() in ["5g", "6g"]: try: valid_chs = self.get_valid_channels_for_bandwidth(band, bw) except ValueError as e: print(f"⚠️ {e} 使用默认数值连续合并") return self.merge_consecutive_channels(ch_list, band="2g") if not valid_chs: print(f"⚠️ 未找到 {band.upper()} @{bw}MHz 的合法信道列表,使用原始数值合并") return self.merge_consecutive_channels(ch_list, band="2g") # 构建信道到索引的映射 ch_to_index = {ch: idx for idx, ch in enumerate(valid_chs)} ranges = [] current_start = current_end = None for ch in sorted_ch: if ch not in ch_to_index: print(f"⚠️ 警告:信道 {ch} 不属于 {band.upper()} @{bw}MHz 合法集合,将单独成段") if current_start is not None: ranges.append((current_start, current_end)) current_start = current_end = None ranges.append((ch, ch)) continue idx = ch_to_index[ch] if current_start is None: current_start = current_end = ch else: prev_idx = ch_to_index[current_end] if idx == prev_idx + 1: # 在合法列表中是“下一个” current_end = ch else: ranges.append((current_start, current_end)) current_start = current_end = ch if current_start is not None: ranges.append((current_start, current_end)) return ranges else: raise ValueError(f"不支持的频段类型: {band}") def find_all_ch_rows_after_auth(self, ws_obj, auth_row, auth_start_col, auth_end_col, max_scan_ahead=70): """ 从 auth_row + 1 开始向下扫描,在限定范围内查找所有包含 CHx 格式的行 返回所有匹配的 0-based 行索引列表 """ fmt = ws_obj["format"] ws = ws_obj["sheet"] nrows = ws.max_row if fmt == "xlsx" else ws.nrows start_scan = auth_row + 1 end_scan = min(start_scan + max_scan_ahead, nrows) ch_rows = [] found_positions = [] # 用于日志 self.logger.info(f"🔍 开始扫描 CH 标题行:第 {start_scan + 1} ~ {end_scan} 行,列 {auth_start_col} ~ {auth_end_col}") for r in range(start_scan, end_scan): for c in range(auth_start_col, auth_end_col + 1): val = self.get_cell_value(ws_obj, r, c) if not val: continue # 更严格的正则:以 CH 开头,可接隔符,后跟数字,且前后无字母 # 避免匹配 CHECK / PCH / BATCH 等 if re.search(r"^CH[\s_\-]?(\d+)$", str(val).strip(), re.I): ch_rows.append(r) found_positions.append((r + 1, c + 1, val)) # 1-based for log break # 每行只记录一次 if ch_rows: self.logger.info(f"✅ 发现 {len(ch_rows)} 个 CH 标题行:") for row_1b, col_1b, val in found_positions: self.logger.info(f" → 第 {row_1b} 行, 第 {col_1b} 列: '{val}'") else: self.logger.info("❌ 未找到任何有效的 CH 标题行") return ch_rows def collect_tx_limit_data(self, ws_obj, sheet_config, header_row_idx, auth_row, auth_start, auth_end, mode_col, rate_col): """ 收集发射功率限制数据,支持多个 CH 区域(multi-channel blocks) """ self.logger.info(" 正在执行 collect_tx_limit_data()...") self.logger.info(" ...") # 获取所有 CH 标题行(支持多块) ch_row_indices = self.find_all_ch_rows_after_auth(ws_obj, auth_row, auth_start, auth_end) if not ch_row_indices: self.logger.info("❌ 错误:无法定位任何 CH 标题行,跳过该表") return [] nrows = ws_obj["sheet"].nrows if ws_obj["format"] == "xls" else ws_obj["sheet"].max_row fmt = ws_obj["format"] ws = ws_obj["sheet"] entries = [] row_mode_info = {} # {row_index: parsed_mode_info} # ======== 第一步:构建 row_mode_info(保持不变)======== if fmt == "xlsx": merged_cells_map = {} for mr in ws.merged_cells.ranges: for r in range(mr.min_row - 1, mr.max_row): for c in range(mr.min_col - 1, mr.max_col): merged_cells_map[(r, c)] = mr for row_idx in range(header_row_idx + 1, nrows): cell_value = None is_merged = (row_idx, mode_col) in merged_cells_map if is_merged: mr = merged_cells_map[(row_idx, mode_col)] top_cell = ws.cell(row=mr.min_row, column=mr.min_col) cell_value = top_cell.value else: raw_cell = ws.cell(row=row_idx + 1, column=mode_col + 1) cell_value = raw_cell.value mode_info = self.parse_mode_cell(cell_value) if mode_info: if is_merged: mr = merged_cells_map[(row_idx, mode_col)] for r in range(mr.min_row - 1, mr.max_row): if header_row_idx < r < nrows: row_mode_info[r] = mode_info.copy() else: row_mode_info[row_idx] = mode_info.copy() else: # XLS for row_idx in range(header_row_idx + 1, ws.nrows): cell_value = self.get_cell_value(ws_obj, row_idx, mode_col) mode_info = self.parse_mode_cell(cell_value) if mode_info: row_mode_info[row_idx] = mode_info.copy() # ======== 第二步:按 CH 块段处理数据 ======== ch_row_indices.sort() ch_row_indices.append(nrows) # 添加哨兵位便于切片 for i in range(len(ch_row_indices) - 1): ch_row_idx = ch_row_indices[i] next_ch_row_idx = ch_row_indices[i + 1] # 解析当前 CH 块的列映射:col_idx -> ch_num ch_map = self.parse_ch_columns_under_auth(ws_obj, ch_row_idx, auth_start, auth_end) if not ch_map: continue self.logger.info(f"🔧 处理 CH 块:第 {ch_row_idx + 1} 行 → 下一块在 {next_ch_row_idx + 1}") # 定义该块的数据范围 block_start = max(header_row_idx + 1, ch_row_idx + 1) block_end = min(next_ch_row_idx, nrows) # 遍历该块内的每一行 for row_idx in range(block_start, block_end): mode_info = row_mode_info.get(row_idx) if not mode_info: continue bw_clean = mode_info["bw"] has_valid_power = any( self.is_valid_power(self.get_cell_value(ws_obj, row_idx, col)) for col in ch_map.keys() ) if not has_valid_power: continue for phy_mode in mode_info["phy_mode_list"]: formatted_mode = self.format_phy_mode(phy_mode) mode_key = f"{formatted_mode}_{bw_clean}M" if not self._ci_contains(sheet_config.get("modes", []), mode_key): continue raw_rate_set = self._ci_get(sheet_config["mode_rate_set_map"], mode_key) if not raw_rate_set: continue rate_set_list = [raw_rate_set] if isinstance(raw_rate_set, str) else raw_rate_set for rate_set_macro in rate_set_list: ch_count = 0 for col_idx, ch in ch_map.items(): # 注意顺序:col -> ch power_val = self.get_cell_value(ws_obj, row_idx, col_idx) if not self.is_valid_power(power_val): continue try: power_dbm = float(power_val) except: continue encoded_power = self.encode_power(power_dbm) entries.append({ "ch": ch, "power_dbm": round(power_dbm, 2), "encoded_power": encoded_power, "rate_set_macro": rate_set_macro, "mode": phy_mode, "bw": bw_clean, "src_row": row_idx + 1, "band": sheet_config["band"], "ch_block_row": ch_row_idx + 1 }) ch_count += 1 if ch_count > 0: self.logger.info( f"📊 第 {row_idx + 1} 行 → {formatted_mode} {bw_clean}M, " f"{ch_count} 信道, 宏={rate_set_macro}, CH块行={ch_row_idx + 1}" ) return entries def get_valid_channels_for_bandwidth(self, band: str, bw: str) -> list: """ 根据频段和带宽获取合法中心信道列表 """ # 规范化输入 band_norm = band.lower().strip() bw_clean = str(bw).replace('MHz', '').strip() if band_norm in ['2.4g', '2.4ghz', 'bg', 'bgn']: band_key = '2g' elif band_norm in ['5g', '5ghz']: band_key = '5g' elif band_norm in ['6g', '6ghz', 'be']: band_key = '6g' else: raise ValueError(f"不支持的频段: {band}") segments = self.config.get("channel_segments", {}) valid_chs = segments.get(band_key, {}).get(bw_clean, []) return sorted(valid_chs) def compress_tx_limit_entries(self, raw_entries, sheet_config): """ 压缩TX限制条目。 Args: raw_entries (list): 原始条目列表。 sheet_config (dict): Excel表格配置字典。 Returns: list: 压缩后的条目列表。 """ self.logger.info(" 正在执行 compress_tx_limit_entries()...") self.logger.info(" ...") from collections import defaultdict modes_order = sheet_config["modes"] # 构建小写映射用于排序(key: "11n_20M") mode_lower_to_index = {mode.lower(): idx for idx, mode in enumerate(modes_order)} range_template = sheet_config["range_macro_template"] group_key = lambda e: (e["encoded_power"], e["rate_set_macro"]) groups = defaultdict(list) for e in raw_entries: groups[group_key(e)].append(e) compressed = [] for (encoded_power, rate_set_macro), entries_in_group in groups.items(): first = entries_in_group[0] power_dbm = first["power_dbm"] mode = first["mode"] # 如 '11N' bw = first["bw"] # 如 '20' 或 '40' ch_list = sorted(e["ch"] for e in entries_in_group) for start, end in self.merge_consecutive_channels( ch_list, band=sheet_config["band"], # 如 "5g" bw=bw # 如 "80" ): range_macro = range_template.format( band=sheet_config["band"], bw=bw, start=start, end=end ) # === 新增:查找或配 CHANNEL_SET_ID === assigned_id = -1 # 表示:这不是 regulatory 范围,无需映射 # === 新增:记录到 generated_ranges === segment_ch_list = list(range(start, end + 1)) self._record_generated_range( range_macro=range_macro, band=sheet_config["band"], bw=bw, ch_start=start, ch_end=end, channels=segment_ch_list ) # 格式化物理层模式(如 '11N' -> '11n') formatted_mode = self.format_phy_mode(mode) # 构造 mode_key 用于查找排序优先级 mode_key = f"{formatted_mode}_{bw}M" mode_order_idx = mode_lower_to_index.get(mode_key.lower(), 999) # 生成注释 comment = f"/* {power_dbm:5.2f}dBm, CH{start}-{end}, {formatted_mode} @ {bw}MHz */" # 新增:生成该段落的实际信道列表 segment_ch_list = list(range(start, end + 1)) compressed.append({ "encoded_power": encoded_power, "range_macro": range_macro, "rate_set_macro": rate_set_macro, "comment": comment, "_mode_order": mode_order_idx, "bw": bw, # 带宽数字(字符串) "mode": formatted_mode, # 统一格式化的模式名 "ch_start": start, "ch_end": end, "power_dbm": round(power_dbm, 2), "ch_list": segment_ch_list, # 关键!用于 global_ch_min/max 统计 }) # 排序后删除临时字段 compressed.sort(key=lambda x: x["_mode_order"]) for item in compressed: del item["_mode_order"] return compressed def _normalize_band(self, band: str) -> str: """ 将各种 band 写法标准化为 '2g', '5g', '6g' """ b = str(band).lower().strip() if b in ['2g', '2.4g', 'bg', 'bgn', '2.4ghz']: return '2g' elif b in ['5g', '5ghz']: return '5g' elif b in ['6g', '6ghz', 'be']: return '6g' else: raise ValueError(f"不支持的频段类型: {band}") def _record_generated_range(self, range_macro, band, bw, ch_start, ch_end, channels): """ 记录生成的 RANGE 宏信息,并自动归类到 used_ranges 和 used_ranges_by_band """ # 标准化频段名称 normalized_band = self._normalize_band(band) entry = { "range_macro": range_macro, "band": normalized_band, "bandwidth": int(bw), "channels": sorted(channels), "start_channel": ch_start, "end_channel": int(ch_end), "source_sheet": getattr(self, 'current_sheet_name', 'unknown') } # 只操作 by_band,添加到全局列表(保持原逻辑) if range_macro not in self.used_ranges_by_band[normalized_band]: self.used_ranges_by_band[normalized_band].append(range_macro) # 添加到类字典(去重) if range_macro not in self.used_ranges_by_band[normalized_band]: self.used_ranges_by_band[normalized_band].append(range_macro) # 同时保留详细元数据 self.generated_ranges.append(entry) def clean_sheet_name(self, name): cleaned = re.sub(r'[^\w\.\=\u4e00-\u9fa5]', '', str(name)) return cleaned def match_sheet_to_config(self, sheet_name): cleaned = self.clean_sheet_name(sheet_name) for cfg in self.config["sheets"]: for pat in cfg["pattern"]: if re.search(pat, cleaned, re.I): self.logger.info(f" '{sheet_name}' → 清洗后: '{cleaned}'") self.logger.info(f" 匹配成功!'{sheet_name}' → [{cfg['band']}] 配置") return cfg self.logger.info(f" '{sheet_name}' → 清洗后: '{cleaned}'") self.logger.info(f"未匹配到 '{sheet_name}' 的模式,跳过...") return None def convert_sheet_with_config(self, ws_obj, sheet_name, sheet_config): self.current_sheet_name = sheet_name header_row_idx, mode_col, rate_col = self.find_table_header_row(ws_obj) if header_row_idx is None: self.logger.info(f" 跳过 '{sheet_name}':未找到 'Mode' 和 'Rate'") return None auth_start, auth_end, auth_row = self.find_auth_power_above_row(ws_obj, header_row_idx) if auth_start is None: self.logger.info(f" 跳过 '{sheet_name}':未找到 '认证功率'") return None raw_entries = self.collect_tx_limit_data( ws_obj, sheet_config, header_row_idx, auth_row, auth_start, auth_end, mode_col, rate_col ) if not raw_entries: self.logger.info(f" 从 '{sheet_name}' 未收集到有效数据") return None compressed = self.compress_tx_limit_entries(raw_entries, sheet_config) # 🔍 统计 2.4G 信道范围(仅限 2G 表) band_key = sheet_config.get("band", "").lower() if band_key in ["2g", "2.4g"]: for entry in compressed: ch_list = entry.get("ch_list", []) if not ch_list: continue start_ch, end_ch = min(ch_list), max(ch_list) if self.global_ch_min is None or start_ch < self.global_ch_min: self.global_ch_min = start_ch if self.global_ch_max is None or end_ch > self.global_ch_max: self.global_ch_max = end_ch # ✅ 返回该 sheet 的完整信息 result = { "sheet_name": sheet_name, "band": band_key, "entries": compressed, "sheet_config": sheet_config } self.logger.info(f"✅ 成功处理 '{sheet_name}' → {len(compressed)} 条条目 (band={band_key.upper()})") return result def render_from_template(self, template_path, context, output_path): """ 根据模板生成文件。 Args: template_path (str): 模板文件路径。 context (dict): 渲染模板所需的上下文数据。 output_path (str): 输出文件的路径。 Returns: None Raises: FileNotFoundError: 如果指定的模板文件不存在。 IOError: 如果在读取或写入文件时发生错误。 """ self.logger.info(" 正在执行 render_from_template()...") self.logger.info(" ...") template_path = resource_path(template_path) with open(template_path, 'r', encoding='utf-8') as f: template = Template(f.read()) content = template.render(**context) os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, 'w', encoding='utf-8') as f: f.write(content) self.logger.info(f" 已生成: {output_path}") def generate_per_band_output(self): """ 为每一个已解析的 sheet 生成对应的 C 文件 """ timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") output_dir = Path(self.output_dir) output_dir.mkdir(parents=True, exist_ok=True) # 模板映射表 TEMPLATE_MAP = { "2g": "tx_limit_table_2_4G.c.j2", "5g": "tx_limit_table_5G.c.j2", "6g": "tx_limit_table_6G.c.j2" } # locale 映射 locale_by_enum = {tgt["enum"]: tgt["assigned_locale"].replace('-', '_') for tgt in self.config.get("locale_targets", []) if "enum" in tgt and "assigned_locale" in tgt} locale_2g = locale_by_enum.get("locale_2g_idx", "DEFAULT_2G") locale_2g_ht = locale_by_enum.get("locale_2g_ht_idx", "DEFAULT_2G_HT") locale_5g = locale_by_enum.get("locale_5g_idx", "DEFAULT_5G") locale_5g_ht = locale_by_enum.get("locale_5g_ht_idx", "DEFAULT_5G_HT") locale_6g = locale_by_enum.get("locale_6g_idx", "DEFAULT_6G") locale_6g_ht = locale_by_enum.get("locale_6g_ht_idx", "DEFAULT_6G_HT") for result in self.per_band_results: sheet_name = result["sheet_name"] band = result["band"] # 如 "2g", "5g" entries = result["entries"] if not entries: continue # 类 normal / ht normal_entries = [e for e in entries if "HT" not in e.get("rate_set_macro", "")] ht_entries = [e for e in entries if "HT" in e.get("rate_set_macro", "")] # 构建结构 normal_struct = self.build_normal_structure(normal_entries) ht_segments = self.build_ht_structure(ht_entries) # fallback range(仅 2G 使用真实值) if band == "2g" and self.global_ch_min and self.global_ch_max: fb_start, fb_end = self.global_ch_min, self.global_ch_max fallback_macro = f"RANGE_2G_20M_{fb_start}_{fb_end}" else: fb_start, fb_end = 1, 11 fallback_macro = "RANGE_2G_20M_1_11" # 配 CHANNEL_SET_ID if fallback_macro not in self.channel_set_map: next_id = max(self.channel_set_map.values(), default=0) + 1 self.channel_set_map[fallback_macro] = next_id fallback_id = self.channel_set_map[fallback_macro] # 选模板 jinja_template_name = TEMPLATE_MAP.get(band, "tx_limit_table_generic.c.j2") template_path = f"templates/{jinja_template_name}" # 输出文件名 output_filename = f"tx_limit_table_{band}.c" output_path = output_dir / output_filename # 上下文 context = { "timestamp": timestamp, "locale_display_name": self.locale_display_name, "locale_name_2_4G": locale_2g, "locale_name_2_4G_HT": locale_2g_ht, "locale_name_5G": locale_5g, "locale_name_5G_HT": locale_5g_ht, "locale_name_6G": locale_6g, "locale_name_6G_HT": locale_6g_ht, "normal_table": normal_struct, "ht_segments": ht_segments, "fallback_encoded_eirp": 30, "fallback_range_macro": fallback_macro, "fallback_ch_start": fb_start, "fallback_ch_end": fb_end, "fallback_channel_set_id": fallback_id, "channel_set_comment": f"Auto-generated fallback for {band.upper()} band", } self.save_channel_set_map_to_config() # 渲染并写入 try: content = self.render_from_template_string(template_path, context) output_path.write_text(content, encoding='utf-8') self.logger.info(f" 已生成 [{band.upper()}] 文件: {output_path}") except Exception as e: self.logger.error(f" 模板渲染失败 ({template_path}): {e}") raise def build_normal_structure(self,entries): grouped = defaultdict(list) for e in entries: bw = str(e["bw"]) grouped[bw].append(e) result = [] for bw in ["20", "40", "80", "160"]: if bw in grouped: sorted_entries = sorted(grouped[bw], key=lambda x: (x["ch_start"], x["encoded_power"])) result.append((bw, sorted_entries)) return result def build_ht_structure(self,entries): groups = defaultdict(list) for e in entries: bw = str(e["bw"]) if "EXT4" in e["rate_set_macro"]: level = "ext4" elif "EXT" in e["rate_set_macro"]: level = "ext" else: level = "base" groups[(level, bw)].append(e) order = [ ("base", "20"), ("base", "40"),("base", "80"), ("base", "160"), ("base", "320"), ("ext", "20"), ("ext", "40"),("ext", "80"), ("ext", "160"),("ext", "320"), ("ext4", "20"), ("ext4", "40"),("ext4", "80"), ("ext4", "160"), ("ext4", "320"), ] segments = [] active_segment_count = sum(1 for key in order if key in groups) for idx, (level, bw) in enumerate(order): key = (level, bw) if key not in groups: continue seg_entries = sorted(groups[key], key=lambda x: (x["ch_start"], x["encoded_power"])) count = len(seg_entries) header_flags = f"CLM_DATA_FLAG_WIDTH_{bw} | CLM_DATA_FLAG_MEAS_COND" if idx < active_segment_count - 1: header_flags += " | CLM_DATA_FLAG_MORE" if level != "base": header_flags += " | CLM_DATA_FLAG_FLAG2" segment = { "header_flags": header_flags, "count": count, "entries": seg_entries } if level == "ext": segment["flag2"] = "CLM_DATA_FLAG2_RATE_TYPE_EXT" elif level == "ext4": segment["flag2"] = "CLM_DATA_FLAG2_RATE_TYPE_EXT4" segments.append(segment) return segments def render_from_template_string(self, template_path, context): from jinja2 import Environment, FileSystemLoader import os # 解析模板目录 template_dir = os.path.dirname(resource_path(template_path)) loader = FileSystemLoader(template_dir) env = Environment(loader=loader) filename = os.path.basename(template_path) template = env.get_template(filename) return template.render(**context) def log_changes_to_file(self, changes, locale_id, total_entries): """将变更摘要写入日志文件""" log_dir = self.output_dir/ "log" log_dir.mkdir(exist_ok=True) current_all = self.all_used_ranges # 使用时间戳生成唯一文件名 timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S") log_path = log_dir / f"parse_{locale_id}_{timestamp_str}.log" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") with open(log_path, 'w', encoding='utf-8') as f: # 覆盖写入最新变更 f.write(f"========================================\n") f.write(f"CLM 变更日志\n") f.write(f"========================================\n") f.write(f"时间: {timestamp}\n") f.write(f"地区码: {locale_id}\n") f.write(f"总 TX 条目数: {total_entries}\n") f.write(f"\n") if not any(changes.values()): f.write(" 本次运行无任何变更,所有文件已是最新状态。\n") else: if changes['added_ranges']: f.write(f" 新增 RANGE ({len(changes['added_ranges'])}):\n") for r in sorted(changes['added_ranges']): f.write(f" → {r}\n") f.write(f"\n") if changes['removed_ranges']: f.write(f" 删除 RANGE ({len(changes['removed_ranges'])}):\n") for r in sorted(changes['removed_ranges']): f.write(f" → {r}\n") f.write(f"\n") if changes['modified_ranges']: f.write(f" 修改 RANGE ({len(changes['modified_ranges'])}):\n") for r in sorted(changes['modified_ranges']): f.write(f" → {r}\n") f.write(f"\n") other_adds = changes['other_additions'] other_dels = changes['other_deletions'] if other_adds or other_dels: f.write(f" 其他变更:\n") for line in other_adds[:10]: f.write(f" add: {line}\n") for line in other_dels[:10]: f.write(f" del: {line}\n") if len(other_adds) > 10 or len(other_dels) > 10: f.write(f" ... 还有 {len(other_adds) + len(other_dels) - 20} 处未显示\n") f.write(f"\n") f.write(f"输出目录: {log_dir}\n") f.write(f"备份文件: {Path(self.target_c_file).with_suffix('.c.bak')}\n") f.write(f"========================================\n") self.logger.info(f" 已保存变更日志 → {log_path}") def save_channel_set_map_to_config(self): """精准更新 config.json 中的 channel_set_map 和相关字段,不改变文件整体结构""" try: # 1. 从磁盘读取完整配置 with open(self.config_file_path, 'r', encoding='utf-8') as f: config = json.load(f) # 2. 更新你需要的字段(相当于“直接赋值”) valid_keys = [k for k in self.channel_set_map.keys() if re.match(r'RANGE_[\dA-Z]+_\d+M_\d+_\d+', k)] config["channel_set_map"] = {k: v for k, v in self.channel_set_map.items() if k in valid_keys} config["used_ranges_by_band"] = { band: sorted(v) for band, v in self.used_ranges_by_band.items() } config["used_ranges_count_per_band"] = { band: len(v) for band, v in self.used_ranges_by_band.items() } # 3. 写回文件 with open(self.config_file_path, 'w', encoding='utf-8') as f: json.dump(config, f, indent=4, ensure_ascii=False) self.logger.info("✅ 成功更新配置文件(仅修改目标字段)") self.logger.info(f" 使用宏数量: {len(self.all_used_ranges)}") except Exception as e: self.logger.error(f"❌ 写入失败: {e}") raise # 主要内容执行入口函数 def convert(self, file_path): self.logger.info(" 正在执行 convert()...") self.logger.info(" ...") c_source = Path(self.target_c_file) if not c_source.exists(): raise FileNotFoundError(f"目标 C 文件不存在: {c_source}") ext = os.path.splitext(file_path)[-1].lower() if ext == ".xlsx": wb = load_workbook(file_path, data_only=True) sheets = [{"sheet": ws, "format": "xlsx"} for ws in wb.worksheets] elif ext == ".xls": wb = xlrd.open_workbook(file_path) sheets = [{"sheet": ws, "format": "xls"} for ws in wb.sheets()] else: raise ValueError("仅支持 .xls 或 .xlsx 文件") # 清空上一次的结果 self.per_band_results.clear() for i, ws_obj in enumerate(sheets): sheet_name = wb.sheet_names()[i] if ext == ".xls" else ws_obj["sheet"].title config = self.match_sheet_to_config(sheet_name) if config: result = self.convert_sheet_with_config(ws_obj, sheet_name, config) if result: self.per_band_results.append(result) else: self.logger.info(f"跳过未匹配的 sheet: {sheet_name}") self.generate_per_band_output() #对外接口 def parse_excel(self): """ 【UI 兼容】供 PyQt UI 调用的入口方法 将当前 self.input_file 中的数据解析并填充到 tx_limit_entries """ self.logger.info(f" 开始解析: {self.input_file}") if not os.path.exists(self.input_file): self.logger.info(f" 文件不存在: {self.input_file}") raise FileNotFoundError(...) else: self.logger.info(f" 文件已找到,大小: {os.path.getsize(self.input_file)} 字节") if not hasattr(self, 'input_file') or not self.input_file: raise ValueError("未设置 input_file 属性!") if not os.path.exists(self.input_file): raise FileNotFoundError(f"文件不存在: {self.input_file}") self.logger.info(f" 开始解析 Excel 文件: {self.input_file}") try: self.convert(self.input_file) # 调用已有逻辑 self.logger.info(f" Excel 解析完成,共生成 {len(self.tx_limit_entries)} 条 TX 限幅记录") except Exception as e: self.logger.info(f" 解析失败: {e}") raise if __name__ == "__main__": import os logging.basicConfig( level=logging.INFO, format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', handlers=[ logging.FileHandler(LOG_FILE, encoding='utf-8'), logging.StreamHandler(sys.stdout) ], force=True ) logger = logging.getLogger(__name__) # 切换到脚本所在目录(可选,根据实际需求) script_dir = os.path.dirname(__file__) os.chdir(script_dir) # 直接使用默认参数(或从其他地方获取) config_path = "config/config.json" locale_id = None # 或指定默认值,如 "DEFAULT" display_name = None # 或指定默认值 input_file = "input/Archer BE900US 2.xlsx" # 创建转换器实例并执行 converter = ExcelToCLMConverter( config_path=config_path, locale_display_name=display_name ) converter.convert(input_file) 目前代码执行逻辑是什么,我需要对比一下来决定是否使用你给的新函数
10-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D_ry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值