树莓派4B搭建Openvino环境

写在文章前面,本文参考大佬的文章,然后在自己踩坑的地方做一下记录。
大佬文章的链接:用树莓派4b构建深度学习应用(八)Openvino篇

1.安装Openvino工具套件

前提要求: 树莓派4B,安装官方推荐的32位系统。

1) 下载安装包

版本选择: 2020年4月的版本
官方文档:https://docs.openvinotoolkit.org/cn/latest/_docs_install_guides_installing_openvino_raspbian.html

# 进入下载目录
cd ~/Downloads/
sudo wget https://download.01.org/opencv/2020/openvinotoolkit/2020.4/l_openvino_toolkit_runtime_raspbian_p_2020.4.287.tgz
# 创建安装文件夹
sudo mkdir -p /opt/intel/openvino
# 解压缩文件
sudo tar -xf l_openvino_toolkit_runtime_raspbian_p_2020.4.287.tgz --strip 1 -C /opt/intel/openvino
2) 安装外部软件依赖(CMake)
sudo apt install cmake
3) 设置环境变量
source /opt/intel/openvino/bin/setupvars.sh
# 永久设置环境变量
echo "source /opt/intel/openvino/bin/setupvars.sh" >> ~/.bashrc

这样每次打开新的终端,将会出现:[setupvars.sh] OpenVINO environment initialized
在这里插入图片描述

4) 添加USB规则
# 将当前的 Linux 用户添加到users群组
sudo usermod -a -G users "$(whoami)"
# 安装USB规则
sh /opt/intel/openvino/install_dependencies/install_NCS_udev_rules.sh
2.构建对象检测样本

插入NCS2,准备运行程序。

1) 新建编译目录
mkdir openvino && cd openvino
mkdir build && cd build
2) 构建对象检测样本
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-march=armv7-a" /opt/intel/openvino/deployment_tools/inference_engine/samples/cpp
make -j2 object_detection_sample_ssd
3) 下载权重文件,网络拓扑文件和被测试图片
# 1.下载.bin带权重的文件
wget --no-check-certificate https://download.01.org/opencv/2020/openvinotoolkit/2020.1/open_model_zoo/models_bin/1/face-detection-adas-0001/FP16/face-detection-adas-0001.bin
# 2.下载带网络拓扑.xml的文件
wget --no-check-certificate https://download.01.org/opencv/2020/openvinotoolkit/2020.1/open_model_zoo/models_bin/1/face-detection-adas-0001/FP16/face-detection-adas-0001.xml
# 3.下载一些包含人脸的图片作为被检测样本,保存到~/Downloads/image 目录下
4) 运行程序
#  -m 指定模型拓扑结构 .xml 文件,程序会自动寻找同名 .bin 权重文件
# -d MYRIAD 表示用神经棒作为推理设备
# -i 指定待检测文件的路径
./armv7l/Release/object_detection_sample_ssd -m face-detection-adas-0001.xml -d MYRIAD -i ~/Downloads/image

上述流程自己在2021年5月12日跑了一遍,没有任何问题,特此记录。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值