滴答滴:最近想要系统的学习大模型相关知识,对于原始模式和模型应用,以及模型微调/训练/推理等概念分不清楚,所以在深入学习大模型之前先搞懂这些名词是很有必要滴。
1.大模型(Large Model)
大模型是AI人工智能领域中的一种重要模型,通常指的是参数量和数据量都非常大的深度学习模型。这些模型由数百万到数十亿的参数组成,需要大量的计算资源和数据进行训练和推理。
例如:GPT-3,是一个拥有超过1750亿个参数的大型语言模型,能够生成自然流畅的文本,用于机器翻译、文本摘要、问答系统等任务
2.大模型应用
大模型应用是基于大模型技术开发的具体产品或服务,这些应用利用大模型的能力来解决实际问题或提供特定的功能。这些应用覆盖了多个领域,如智能助手、智能客服、自动驾驶、金融风控等。
例如:
(1)苹果的Siri
(2)基于GPT-3技术开发的ChatGPT是一个智能对话应用,它利用GPT-3的强大能力实现了自然流畅的智能对话功能。
(3)文心一言:文心一言是基于原始模型(Transformer架构、LLM技术、预训练语言模型等)生成的应用,它集成了这些模型的强大能力,并通过进一步的优化和调整,形成了具有独特功能和特点的智能应用。
3.模型微调
模型微调是指在预训练模型的基础上,针对特定任务进行微小调整,以使模型更好地适应新的任务和数据。