插入排序
思想:
有一段总序列,如果把第一个值看成一个有序序列,其余值可以看为无序序列。把无序序列的第一个值依次到最后一个值往有序序列合适的位置插入,那么得到的总序列即为有序序列。
void InsertSort(int* arr, int n)
{
for (int i = 0; i < n - 1; ++i)
{
int end = i;//记录有序序列最后一个值的坐标
int cur = arr[end + 1];//记录无序序列第一个值(要插入的元素)
while (end >= 0 && arr[end] > cur)
{
arr[end + 1] = arr[end];
--end;
}
arr[end + 1] = cur;
}
}
过程
- 将总序列分为俩部分,第一个元素作为有序序列,其余作为无序序列。将无序序列元素一个个往有序序列插入。
- 记录有序序列第一个元素坐标end和无序序列第一个值cur(要插入的元素)。# 注意这里的end和cur的值随着元素的插入而变化的 #
- 将arr[end]与cur比较大小,若升序则arr[end]>cur时把arr[end]的值赋给arr[end+1],若降序arr[end]<cur即可。然后end前移。(此步骤中必须保证end>0防止越界)
- 将之前记录无序序列第一个值cur赋给arr[end+1] (此时end已经- -(减减)过,所以arr[end+1]依然是有序序列最后一个元素)。当不满足arr[end]>cur时,此时赋给相当于自赋所以无影响。
- 重复步骤2——5,直到无序序列元素插入完即可
希尔排序
思想:
先取一个小于n的整数d1作为第一个增量,把序列的所有元素分成d1个组。距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插人排序.然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有元素放在同一组中进行直接插入排序为止。
void ShellSort(int* arr, int n)
{
for (int grp = n / 2; grp > 0; grp /= 2)//增量依次/2
{
cout << "插入排序:" << endl;
for (int i = grp; i < n; i ++)
{
//增量依次/2的插入排序
int end = 0;//记录要插入的元素
int cur = arr[i];
for(end = i - grp; end >= 0 && arr[end] > cur; end -= grp)
{
arr[end + grp] = arr[end];
}
arr[end + grp] = cur;
//PrintArr(arr, n);//打印每一步
}
}
}
- 具体每一步如下:
过程
- 确定初始增量为序列总长度n的1/2
- 将序列中距离为增量长度的元素分为一组。将这一组元素进行插入排序。排序后的序列为有序序列
- 将增量变化为之前的1/2,重复步骤二。
- 直至增量为1时,进行完最后一次插入排序即可。
插入排序和希尔排序对比
插入排序 | 希尔排序 | |
---|---|---|
时间复杂度 | O(N2) | O(Nlog2N) |
稳定性 | 稳定 | 不稳定 |
适用性 | 基本有序的序列 | 长度长的序列 |