正交对角化,奇异值分解

与普通矩阵对角化不同的是,正交对角化是使用正交矩阵对角化,正交矩阵是每列向量都是单位向量,正交矩阵*它的转置就是单位矩阵

与普通矩阵对角化一样,正交对角化的结果也是由特征值组成的对角矩阵

本质还是特征向量对原矩阵的拉伸,收缩。

A为特征向量矩阵,对角化为A^{-1}XA

B为特征向量的正交矩阵,对角化为B^{T}XB

上面两个的结果是一样的

下面用奇异值分解来举个例子

A=\begin{bmatrix} 1 &0 \\ 0 & 1\\ 1& 0 \end{bmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值