- 博客(2)
- 收藏
- 关注
原创 数学物理方法_第二次作业_王怀帅_202018019427053
1、若f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)为解析函数,请证明f∗(z∗)f^*(z^*)f∗(z∗)也是解析函数。 证: 复数: z=x+iyz=x+iyz=x+iy 复数的共轭: z∗=x−iyz^*=x-iyz∗=x−iy f(z∗)=u(x,−y)+iv(x,−y)f(z^*)=u(x,-y)+iv(x,-y)f(z∗)=u(x,−y)+iv(x,−y) f∗(z∗)=u(x,−y)−iv(x,−y)f^*(z^*)=u(x
2020-10-22 22:44:10 947
原创 数学物理方法_第一次作业_王怀帅_202018019427053
第一章 R3R^3R3空间的向量分析 一、证明以下公式: ∵r⃗=xex⃗+yey⃗+zez⃗\because\vec{r}=x\vec{e_{x}}+y\vec{e_{y}}+z\vec{e_{z}}∵r=xex+yey+zez ∵▽=∂∂xex⃗+∂∂yey⃗+∂∂zez⃗\because\triangledown=\frac{\partial}{\partial x}\vec{e_{x}}+\frac{\partial}{\partial y}\vec{e_{y}}+\frac{\p
2020-10-08 21:28:17 696 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人