蓝桥杯Java ABC组 LG P1586 四方定理

题目链接:
https://www.luogu.com.cn/problem/P1586

#完全背包 #方案数 #二维背包 #Favorite

题意就是一个有限制的完全背包求方案数(注意审题,一开始我看成了 01 背包,调了二十分钟没调出来)

f[i][j][k] 表示为前 i i i 个物品,一维容量为 j j j,二维容量为 k k k 的背包方案数,对于每个物品,一维体积为 a [ i ] a[i] a[i],二维体积为 1 1 1

这里有个细节需要考虑:

  • 一维容量要求恰好装满
  • 二维容量要求不超过

所以解决方法就是把状态定义为前 i i i 个物品恰好装满一维容量为 j j j,二维容量为 k k k 的背包的方案数,最后用一个 f o r for for 循环累加起来即可

可以在一开始处理时就把所有数字处理出来,询问时直接 f o r for for 循环求和即可

代码

import java.io.*;
import java.util.*;
import static java.lang.Math.*;

public class Main {

    static int status;
    static BufferedReader buf = new BufferedReader(new InputStreamReader(System.in));
    static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
    static PrintWriter cout = new PrintWriter(bw);
    static StreamTokenizer st = new StreamTokenizer(buf);

    public static int nextInt() throws IOException {
        status = st.nextToken();
        return (int) st.nval;
    }

    static int n, m, t;
    static int[] a;
    static int[][] f;
    static final int INF = 0x3f3f3f3f, MOD = (int) 1e9 + 7;

    public static void main(String[] args) throws IOException {
        t = nextInt();
        a = new int[1010];
        f = new int[32769][5];

        for(int i=1;i<=32768/i;i++)
            a[++m]=i*i;
        f[0][0]=1;
        for(int i=1;i<=m;i++){
            for(int j=a[i];j<=32768;j++)
                for(int k=1;k<=4;k++)
                    f[j][k]+=f[j-a[i]][k-1];
        }
        
        while(t-- >0){
            n = nextInt();
            int ans=0;
            for(int i=1;i<=4;i++)
                ans+=f[n][i];
            cout.println(ans);

        }
        cout.flush();

    }// End of main

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值