exgcd

exgcd主要用来求逆元

1.辗转相除法

给定两个整数a,b求a,b的gcd以及同余意义下的逆元
首先有d=gcd(a,b)=gcd(b,a-b)
因为有
d ∣ a , d ∣ b a = d q , b = d q 2 , 且 q , q 2 互素 a − b = d ( q − q 2 ) = > d ∣ a − b 由于互素 , q − q 2 和 q 2 不存在约数 d 2 否则容易得到 q 2 = d 2 q 3 , ( q − q 2 ) / d 2 = q / d 2 − q 3 整除 则 d 2 ∣ q , d 2 ∣ q 2 = > d 2 = 1 d|a, d|b \\ a=dq,b=dq_2,且q,q_2互素\\ a-b=d(q-q2)=>d|a-b \\ 由于互素,q-q_2和q_2不存在约数d_2\\ 否则容易得到q_2=d_2q_3,(q-q_2)/d_2=q/d_2-q_3整除\\ 则d2|q,d_2|q_2 => d_2=1 da,dba=dq,b=dq2,q,q2互素ab=d(qq2)=>dab由于互素,qq2q2不存在约数d2否则容易得到q2=d2q3,(qq2)/d2=q/d2q3整除d2∣q,d2q2=>d2=1
因此单次减法上gcd相同,因此在辗转相除的意义下gcd同样相同

2.exgcd求逆元原理

exgcd同样可以用于求一个数同余意义下的逆元
显然的有
a x + b y = k g c d ( a , b ) ax+by=kgcd(a,b) ax+by=kgcd(a,b)
裴蜀定理指出,一定存在一个整数解x,y使得k取到1
那么我们代入,令b为取模的数,如果有a,b互素则有
a x + b y = 1 = > ( a x + b y ) % b = 1 ax+by=1 => (ax+by)\%b=1 ax+by=1=>(ax+by)%b=1
则x为a在b的同余系下的逆元

3.exgcd工作流程

exgcd的工作流程和辗转相除法密切相关
方便起见,用 r 0 , r 1 代入 a , b 对于 i > 1 , r i = r i − 2 % r i − 1 根据 g c d 不变以及裴蜀定理 r 0 x + r 1 y = d r 1 x 1 + r 2 y 1 = d . . . r 2 = r 0 % r 1 = r 0 − ⌊ r 0 / r 1 ⌋ r 1 ,代入 r 1 x 1 + ( r 0 − ⌊ r 0 / r 1 ⌋ r 1 ) y 1 = r 0 y 2 + ( x 1 − ⌊ r 0 / r 1 ⌋ y 1 ) r 1 = d 方便起见,用r_0,r_1代入a,b\\ 对于i>1,r_i=r_{i-2}\%r_{i-1}\\ 根据gcd不变以及裴蜀定理\\ r_0x+r_1y=d\\ r_1x_1+r_2y_1=d\\ ...\\ r_2=r_0\%r_1=r_0-\lfloor r_0/r_1\rfloor r_1,代入\\ r_1x_1+(r_0-\lfloor r_0/r_1\rfloor r_1)y_1=r_0y_2+(x_1-\lfloor r_0/r_1\rfloor y_1)r1=d 方便起见,用r0,r1代入a,b对于i>1,ri=ri2%ri1根据gcd不变以及裴蜀定理r0x+r1y=dr1x1+r2y1=d...r2=r0%r1=r0r0/r1r1,代入r1x1+(r0r0/r1r1)y1=r0y2+(x1r0/r1y1)r1=d
注意到2式和1式具有了相同的形式,这说明两者的解可以相互代入,因此可以解出2式的解,再按相应的形式代入回去即可得到1式的解,而2式的解又可以通过辗转相除一直递归做下去
一直到可以很容易的判断出某个式子成立的时候,也就是最终辗转相除法得到rn=0的时候,则有xn-1=1,yn-1=0成立,然后逐项代入回去
代码如下

int Exgcd(int a,int b,int &x,int &y)
{
    if (!b) 
    {
        x=1;y=0;
        return a;
    }
    int d=Exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-(a/b)*y;
    return d;
}
————————————————
版权声明:本文为CSDN博主「HownoneHe」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/HownoneHe/article/details/50695810

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值