[bzoj1005][prufer]明明的烦恼

4 篇文章 0 订阅

1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 6358 Solved: 2471
[Submit][Status][Discuss]
Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣……给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3

1

-1

-1
Sample Output

2
HINT

  两棵树分别为1-2-3;1-3-2

Source

[Submit][Status][Discuss]


sol:

没有给边,又有度数限制,显然是prufer。
我们只考虑有度数限制的点。
他们显然可以在prufer中出现度数-1次,组合数算一下。最后prufer中还空多少个,每一个空都能用所有的-1来填,就是-1的数量^{空格数}

这题高精度,记得判非法(代码写的蠢,好久前写的了)
因为涉及到除法,所以我是分解质因数写的高精。

#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
int n,m;
inline int read()
{
    char c;
    int res,flag=0;
    while((c=getchar())>'9'||c<'0') if(c=='-')flag=1;
    res=c-'0';
    while((c=getchar())>='0'&&c<='9') res=(res<<3)+(res<<1)+c-'0';
    return flag?-res:res;
}
const int N=1100;
int left,unknown;
struct cc
{
    int c[N],p[N],len;
    friend inline cc operator *(cc a,cc b)
    {
        int i=1,j=1;
        cc c;
        c.len=0;
        while(i<=a.len&&j<=b.len)
        {
            if(a.c[i]<b.c[j])
            {
                c.c[++c.len]=a.c[i];
                c.p[c.len]=a.p[i];
                ++i;
            }
            else if(a.c[i]==b.c[j])
            {
                c.c[++c.len]=a.c[i];
                c.p[c.len]=a.p[i]+b.p[j];
                ++i;++j;
            }
            else
            {
                c.c[++c.len]=b.c[j];
                c.p[c.len]=b.p[j];
                ++j;
            }
        }
        for(;i<=a.len;++i) c.c[++c.len]=a.c[i],c.p[c.len]=a.p[i];
        for(;j<=b.len;++j) c.c[++c.len]=b.c[j],c.p[c.len]=b.p[j];
        return c; 
    }
    friend inline cc operator /(cc a,cc b)
    {
        int i=1,j=1;
        cc c;
        c.len=0;
        while(i<=a.len&&j<=b.len)
        {
            if(a.c[i]<b.c[j])
            {
                c.c[++c.len]=a.c[i];
                c.p[c.len]=a.p[i];
                ++i;
            }
            else if(a.c[i]==b.c[j])
            {
                c.c[++c.len]=a.c[i];
                c.p[c.len]=a.p[i]-b.p[j];
                ++i;++j;
            }
        }
        for(;i<=a.len;++i) c.c[++c.len]=a.c[i],c.p[c.len]=a.p[i];
        return c; 
    }
}ans,fac[N];
int prime[N];
bool is[N];
inline cc trans(int x)
{
    cc c;
    c.len=0;
    for(int i=1;i<=prime[0]&&i<=x;++i)
    if(!(x%prime[i]))
    {
        c.c[++c.len]=prime[i];
        c.p[c.len]=0;
        while(!(x%prime[i]))
        {
            x/=prime[i];
            c.p[c.len]++;
        }
    }
    return c;
}
inline cc C(int n,int m)
{
    if(!m)
    {
        cc tmp;
        tmp.len=0;
        return tmp;
    }
    return fac[n]/fac[m]/fac[n-m];
}
int Left;
const int inf=1e4;
struct dd
{
    int num[N],len;
    friend inline dd operator *(dd a,int b)
    {
        for(int i=1;i<=a.len;++i)
            a.num[i]*=b;
        for(int i=1;i<=a.len;++i)
        {
            a.num[i+1]+=a.num[i]/inf;
            a.num[i]%=inf;
        }
        while(a.num[a.len+1])
        {
            a.len++;
            a.num[a.len+1]+=a.num[a.len]/inf;
            a.num[a.len]%=inf;
        }
        return a;
    }
};
inline void Printf(cc x)
{
    dd y;
    y.len=1;
    memset(y.num,0,sizeof(y.num));
    y.num[1]=1;
    for(int i=1;i<=x.len;++i)
    {
        while(x.p[i])
        {
            y=y*x.c[i];
            x.p[i]--;
        } 
    }
    printf("%d",y.num[y.len]);
    for(int i=y.len-1;i>=1;--i)
    printf("%04d",y.num[i]);
}
int main()
{
//  freopen("1005.in","r",stdin);
//  freopen(".out","w",stdout);
    ans.len=0;
    n=read();
    for(int i=2;i<=n;++i)
    {
        if(!is[i]) prime[++prime[0]]=i;
        for(int j=1;j<=prime[0]&&i*prime[j]<=n;++j)
        {
            is[i*prime[j]]=1;
            if(!(i%prime[j])) break;
        }
    }
    for(int i=1;i<=n;++i)
    fac[i]=fac[i-1]*trans(i);
    Left=n-2;
    int x;
    for(int i=1;i<=n;++i)
    {
        x=read();
        if(x==-1) unknown++;
        else
        {
            if(!x||Left-x+1<0)
            {
                printf("0");
                return 0;
            }
            ans=ans*C(Left,x-1);
            Left=Left-x+1;
        }
    }
    for(int i=1;i<=Left;++i)
    ans=ans*trans(unknown);
    Printf(ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值