1005: [HNOI2008]明明的烦恼
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 6358 Solved: 2471
[Submit][Status][Discuss]
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣……给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
3
1
-1
-1
Sample Output
2
HINT
两棵树分别为1-2-3;1-3-2
Source
[Submit][Status][Discuss]
sol:
没有给边,又有度数限制,显然是prufer。
我们只考虑有度数限制的点。
他们显然可以在prufer中出现度数-1次,组合数算一下。最后prufer中还空多少个,每一个空都能用所有的-1来填,就是-1的数量^{空格数}
这题高精度,记得判非法(代码写的蠢,好久前写的了)
因为涉及到除法,所以我是分解质因数写的高精。
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
int n,m;
inline int read()
{
char c;
int res,flag=0;
while((c=getchar())>'9'||c<'0') if(c=='-')flag=1;
res=c-'0';
while((c=getchar())>='0'&&c<='9') res=(res<<3)+(res<<1)+c-'0';
return flag?-res:res;
}
const int N=1100;
int left,unknown;
struct cc
{
int c[N],p[N],len;
friend inline cc operator *(cc a,cc b)
{
int i=1,j=1;
cc c;
c.len=0;
while(i<=a.len&&j<=b.len)
{
if(a.c[i]<b.c[j])
{
c.c[++c.len]=a.c[i];
c.p[c.len]=a.p[i];
++i;
}
else if(a.c[i]==b.c[j])
{
c.c[++c.len]=a.c[i];
c.p[c.len]=a.p[i]+b.p[j];
++i;++j;
}
else
{
c.c[++c.len]=b.c[j];
c.p[c.len]=b.p[j];
++j;
}
}
for(;i<=a.len;++i) c.c[++c.len]=a.c[i],c.p[c.len]=a.p[i];
for(;j<=b.len;++j) c.c[++c.len]=b.c[j],c.p[c.len]=b.p[j];
return c;
}
friend inline cc operator /(cc a,cc b)
{
int i=1,j=1;
cc c;
c.len=0;
while(i<=a.len&&j<=b.len)
{
if(a.c[i]<b.c[j])
{
c.c[++c.len]=a.c[i];
c.p[c.len]=a.p[i];
++i;
}
else if(a.c[i]==b.c[j])
{
c.c[++c.len]=a.c[i];
c.p[c.len]=a.p[i]-b.p[j];
++i;++j;
}
}
for(;i<=a.len;++i) c.c[++c.len]=a.c[i],c.p[c.len]=a.p[i];
return c;
}
}ans,fac[N];
int prime[N];
bool is[N];
inline cc trans(int x)
{
cc c;
c.len=0;
for(int i=1;i<=prime[0]&&i<=x;++i)
if(!(x%prime[i]))
{
c.c[++c.len]=prime[i];
c.p[c.len]=0;
while(!(x%prime[i]))
{
x/=prime[i];
c.p[c.len]++;
}
}
return c;
}
inline cc C(int n,int m)
{
if(!m)
{
cc tmp;
tmp.len=0;
return tmp;
}
return fac[n]/fac[m]/fac[n-m];
}
int Left;
const int inf=1e4;
struct dd
{
int num[N],len;
friend inline dd operator *(dd a,int b)
{
for(int i=1;i<=a.len;++i)
a.num[i]*=b;
for(int i=1;i<=a.len;++i)
{
a.num[i+1]+=a.num[i]/inf;
a.num[i]%=inf;
}
while(a.num[a.len+1])
{
a.len++;
a.num[a.len+1]+=a.num[a.len]/inf;
a.num[a.len]%=inf;
}
return a;
}
};
inline void Printf(cc x)
{
dd y;
y.len=1;
memset(y.num,0,sizeof(y.num));
y.num[1]=1;
for(int i=1;i<=x.len;++i)
{
while(x.p[i])
{
y=y*x.c[i];
x.p[i]--;
}
}
printf("%d",y.num[y.len]);
for(int i=y.len-1;i>=1;--i)
printf("%04d",y.num[i]);
}
int main()
{
// freopen("1005.in","r",stdin);
// freopen(".out","w",stdout);
ans.len=0;
n=read();
for(int i=2;i<=n;++i)
{
if(!is[i]) prime[++prime[0]]=i;
for(int j=1;j<=prime[0]&&i*prime[j]<=n;++j)
{
is[i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
for(int i=1;i<=n;++i)
fac[i]=fac[i-1]*trans(i);
Left=n-2;
int x;
for(int i=1;i<=n;++i)
{
x=read();
if(x==-1) unknown++;
else
{
if(!x||Left-x+1<0)
{
printf("0");
return 0;
}
ans=ans*C(Left,x-1);
Left=Left-x+1;
}
}
for(int i=1;i<=Left;++i)
ans=ans*trans(unknown);
Printf(ans);
}