[斯特林数]小结

版权声明:他无力阻止你的转载 https://blog.csdn.net/qq_36993218/article/details/79871204

没有小结,只是简单说明了。
第二类斯特林数,记作S(n,m),意义是将n个不同的元素拆分为m个集合的方案数。
有一个递推式S(n,m)=S(n-1,m)*m+S(n-1,m-1)
考虑新的这个元素被加入了之前的集合中,他有m个不同的集合可以放,另一种是这个新的元素放入了一个新的集合中。

一道简单的题目为例子
这里写图片描述
这里写图片描述
不知道这玩意的官方名称是什么。我叫这种技能为幂的拆分。
lk=ikS(k,i)P(l,i)
证明很简单,左边的式子相当于是把k个不同的小球放在l个不同的盒子里的方案数。右边是枚举了不为空的盒子的数量,又因为盒子本质不同,所以乘上一个排列数。
容易发现P(l,i)=C(l,i)i!
lk=ikS(k,i)C(l,i)i!
那么上面那道题的话只要设一个状态f[u][i]表示1到u这个点的,C(l,i)的和值的话,转移就是C(l,i)变成了C(l+1,i),根据组合数的意义,f[v][i]可以直接从f[u][i]+f[u][i-1]转移过来。
最后再搞搞把答案还原出来即可。

#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long ll;
typedef double db;
int n,m,k;
inline int read()
{
    char c;
    int res,flag=0;
    while((c=getchar())>'9'||c<'0') if(c=='-')flag=1;
    res=c-'0';
    while((c=getchar())>='0'&&c<='9') res=(res<<3)+(res<<1)+c-'0';
    return flag?-res:res;
}
const int N=110000;
const int pyz=998244353;
int f[N][510],fac[N],inv[N];
inline int ksm(int s,int t)
{
    int res=1;
    while(t)
    {
        if(t&1) res=(ll)res*s%pyz;
        s=(ll)s*s%pyz;
        t>>=1;
    }
    return res;
}
inline int invs(int n)
{
    return inv[n]*fac[n-1]%pyz;
}
inline int get_c(int n,int m)
{
    return (ll)fac[n]*inv[m]%pyz*inv[n-m]%pyz;
}
int q[N],deg[N];
int fir[N],nex[N*2],go[N*2],tot;
inline void add(int x,int y)
{
    nex[++tot]=fir[x];fir[x]=tot;go[tot]=y;deg[y]++;
}
int ans[N],s[510][510];
inline void bfs()
{
    int u,e,v,t=0,w;
    q[w=1]=1;
    f[1][0]=1;
    while(t<w)
    {
        u=q[++t];
        for(int i=0;i<=k;++i)
        ans[u]=(ans[u]+(ll)s[k][i]*f[u][i]%pyz*fac[i]%pyz)%pyz;
        for(e=fir[u];v=go[e],e;e=nex[e])
        {
            if(!(--deg[v])) q[++w]=v;
            f[v][0]=(f[v][0]+f[u][0])%pyz;
            for(int i=1;i<=k;++i)
            f[v][i]=((f[v][i]+f[u][i])%pyz+f[u][i-1])%pyz;
        }
    }
}
int main()
{
    freopen("xmasdag.in","r",stdin);
    freopen("xmasdag.out","w",stdout);
    n=read();
    m=read();
    k=read();
    fac[0]=1;
    for(int i=1;i<=k;++i) fac[i]=(ll)fac[i-1]*i%pyz;
    inv[k]=ksm(fac[k],pyz-2);
    for(int i=k-1;i>=0;--i) inv[i]=(ll)inv[i+1]*(i+1)%pyz;
    s[0][0]=1;
    for(int i=1;i<=k;++i)
    for(int j=1;j<=k;++j)
    s[i][j]=((ll)s[i-1][j]*j%pyz+s[i-1][j-1])%pyz;

    for(int i=1;i<=m;++i)
    {
        int x=read();
        int y=read();
        add(x,y);
    }
    bfs();
    for(int i=1;i<=n;++i)
    printf("%d\n",ans[i]);
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页