此前跟同事聊过关于移动端用canvas压缩图片后再上传的功能,最近有了点空闲时间,所以就实践了一下。demo效果链接在文章底部贴出。
在做移动端图片上传的时候,用户传的都是手机本地图片,而本地图片一般都相对比较大,拿iphone6来说,平时拍很多图片都是一两M的,如果直接这样上传,那图片就太大了,如果用户用的是移动流量,完全把图片上传显然不是一个好办法。
目前来说,HTML5的各种新API都在移动端的webkit上得到了较好的 实现。根据查看caniuse,本demo里使用到的FileReader、Blob、Formdata对象均已在大部分移动设备浏览器中得到了实现 (safari6.0+、android 3.0+),所以直接在前端压缩图片,已经成了很多移动端图片上传的必备功能了。
在移动端压缩图片并且上传主要用到filereader、canvas 以及 formdata 这三个h5的api。逻辑并不难。整个过程就是:
(1)用户使用input file上传图片的时候,用filereader读取用户上传的图片数据(base64格式)
(2)把图片数据传入img对象,然后将img绘制到canvas上,再调用canvas.toDataURL对图片进行压缩
(3)获取到压缩后的base64格式图片数据,转成二进制塞入formdata,再通过XmlHttpRequest提交formdata。
如此三步,就完成了图片的压缩和上传。
说起来好像挺简单,其实还是有些坑的。接下来就直接用代码进行分析:
【一】获取图片数据
先是获取图片数据,也就是监听input file的change事件,然后获取到上传的文件对象files,将类数组的files转成数组,然后进行forEach遍历。
接着判断文件类型,如果不是图片则不作处理。如果是图片就实例化一个filereader,以base64格式读取上传的文件数据,判断数据长度,如果大于200KB的图片就调用compress方法进行压缩,否则调用upload方法进行上传。
filechooser.onchange = function () {
if (!this.files.length) return;
var files = Array.prototype.slice.call(this.files);
if (files.length > 9) {
alert("最多同时只可上传9张图片");
return;
}
files.forEach(function (file, i) {
if (!/\/(?:jpegpnggif)/i.test(file.type)) return;
var reader = new FileReader();
var li = document.createElement("li");
li.innerHTML = "<div class="progress"><span></span></div>";
$(".img-list").append($(li));
reader.onload = function () {
var result = this.result;
var img = new Image();
img.src = result;
//如果图片大小小于200kb,则直接上传
if (result.length <= maxsize) {
$(li).css("background-image", "url(" + result + ")");
img = null;
upload(result, file.type, $(li));
return;
}
// 图片加载完毕之后进行压缩,然后上传
if (img.complete) {
callback();
} else {
img.onload = callback;
}
function callback() {
var data = compress(img);
$(li).css("background-image", "url(" + data + ")");
upload(data, file.type, $(li));
img = null;
}
};
reader.readAsDataURL(file);
})
};
【2】压缩图片
上面做完图片数据的获取后,就可以做compress压缩图片的方法了。而压缩图片也并不是直接把图片绘制到canvas再调用一下toDataURL就行的。
在IOS中,canvas绘制图片是有两个限制的:
首先是图片的大小,如果图片的大小超过两百万像素,图片也是无法绘制到canvas上的,调用drawImage的时候不会报错,但是你用toDataURL获取图片数据的时候获取到的是空的图片数据。
再者就是canvas的大小有限制,如果canvas的大小大于大概五百万像素(即宽高乘积)的时候,不仅图片画不出来,其他什么东西也都是画不出来的。
应对第一种限制,处理办法就是瓦片绘制了。瓦片绘制,也就是将图片分割成多块绘制到canvas上,我代码里的做法是把图片分割成100万像素一块的大小,再绘制到canvas上。
而应对第二种限制,我的处理办法是对图片的宽高进行适当压缩,我代码里为了保险起见,设的上限是四百万像素,如果图片大于四百万像素就压缩到小于四百万像素。四百万像素的图片应该够了,算起来宽高都有2000X2000了。
如此一来就解决了IOS上的两种限制了。
除了上面所述的限制,还有两个坑,一个就是canvas的toDataURL是只能压缩jpg的,当用户上传的图片是png的话,就需要转成 jpg,也就是统一用canvas.toDataURL("image/jpeg", 0.1) , 类型统一设成jpeg,而压缩比就自己控制了。
另一个就是如果是png转jpg,绘制到canvas上的时候,canvas存在透明区域的话,当转成jpg的时候透明区域会变成黑色,因为 canvas的透明像素默认为rgba(0,0,0,0),所以转成jpg就变成rgba(0,0,0,1)了,也就是透明背景会变成了黑色。解决办法就 是绘制之前在canvas上铺一层白色的底色。
function compress(img) {
var initSize = img.src.length;
var width = img.width;
var height = img.height;
//如果图片大于四百万像素,计算压缩比并将大小压至400万以下
var ratio;
if ((ratio = width * height / 4000000)>1) {
ratio = Math.sqrt(ratio);
width /= ratio;
height /= ratio;
}else {
ratio = 1;
}
canvas.width = width;
canvas.height = height;
// 铺底色
ctx.fillStyle = "#fff";
ctx.fillRect(0, 0, canvas.width, canvas.height);
//如果图片像素大于100万则使用瓦片绘制
var count;
if ((count = width * height / 1000000) > 1) {
count = ~~(Math.sqrt(count)+1); //计算要分成多少块瓦片
// 计算每块瓦片的宽和高
var nw = ~~(width / count);
var nh = ~~(height / count);
tCanvas.width = nw;
tCanvas.height = nh;
for (var i = 0; i < count; i++) {
for (var j = 0; j < count; j++) {
tctx.drawImage(img, i * nw * ratio, j * nh * ratio, nw * ratio, nh * ratio, 0, 0, nw, nh);
ctx.drawImage(tCanvas, i * nw, j * nh, nw, nh);
}
}
} else {
ctx.drawImage(img, 0, 0, width, height);
}
//进行最小压缩
var ndata = canvas.toDataURL("image/jpeg", 0.1);
console.log("压缩前:" + initSize);
console.log("压缩后:" + ndata.length);
console.log("压缩率:" + ~~(100 * (initSize - ndata.length) / initSize) + "%");
tCanvas.width = tCanvas.height = canvas.width = canvas.height = 0;
return ndata;
}
【三】图片上传
完成图片压缩后,就可以塞进formdata里进行上传了,先将base64数据转成字符串,再实例化一个ArrayBuffer,然后将字符 串以8位整型的格式传入ArrayBuffer,再通过BlobBuilder或者Blob对象,将8位整型的ArrayBuffer转成二进制对象 blob,然后把blob对象append到formdata里,再通过ajax发送给后台即可。
XmlHttpRequest2中不仅可以发送大数据,还多出了比如获取发送进度的API,我代码里也进行了简单的实现。
// 图片上传,将base64的图片转成二进制对象,塞进formdata上传
function upload(basestr, type, $li) {
var text = window.atob(basestr.split(",")[1]);
var buffer = new ArrayBuffer(text.length);
var ubuffer = new Uint8Array(buffer);
var pecent = 0 , loop = null;
for (var i = 0; i < text.length; i++) {
ubuffer[i] = text.charCodeAt(i);
}
var Builder = window.WebKitBlobBuilder window.MozBlobBuilder;
var blob;
if (Builder) {
var builder = new Builder();
builder.append(buffer);
blob = builder.getBlob(type);
} else {
blob = new window.Blob([buffer], {type: type});
}
var xhr = new XMLHttpRequest();
var formdata = new FormData();
formdata.append("imagefile", blob);
xhr.open("post", "/cupload");
xhr.onreadystatechange = function () {
if (xhr.readyState == 4 && xhr.status == 200) {
console.log("上传成功:" + xhr.responseText);
clearInterval(loop);
//当收到该消息时上传完毕
$li.find(".progress span").animate({"width": "100%"}, pecent < 95 ? 200 : 0, function () {
$(this).html("上传成功");
});
$(".pic-list").append("<a href="" + xhr.responseText + "">" + xhr.responseText + "<img src="" + xhr.responseText + "" /></a>")
}
};
//数据发送进度,前50%展示该进度
xhr.upload.addEventListener("progress", function (e) {
if (loop) return;
pecent = ~~(100 * e.loaded / e.total) / 2;
$li.find(".progress span").css("width", pecent + "%");
if (pecent == 50) {
mockProgress();
}
}, false);
//数据后50%用模拟进度
function mockProgress() {
if (loop) return;
loop = setInterval(function () {
pecent++;
$li.find(".progress span").css("width", pecent + "%");
if (pecent == 99) {
clearInterval(loop);
}
}, 100)
}
xhr.send(formdata);
}
至此,整个上传的前端图片压缩就完成了,因为是用了formdata提交,所以后台接数据的时候就跟普通form表单提交数据一样处理即可。