hadoop的单机版测试

本文详细介绍了Hadoop分布式文件系统的核心设计,包括HDFS和MapReduce。HDFS适合存储大规模数据,采用流式数据访问和硬件故障容错机制。MapReduce则提供了一种处理大量数据的编程模型。文章还涵盖了Hadoop的部署步骤,特别是伪分布集群的搭建,以及YARN单节点的配置。
摘要由CSDN通过智能技术生成
一、了解Hadoop

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS

Hadoop的框架最核心的设计就是:HDFS和MapReduce。

HDFS为海量的数据提供了存储,
MapReduce为海量的数据提供了计算。而两者只是理论基础,不是具体可使用的高级应用。

HDFS的设计特点是:

1、大数据文件,非常适合上T级别的大文件或者一堆大数据文件的存储,如果文件只有几个G甚至更小就没啥意思了。

2、文件分块存储,HDFS会将一个完整的大文件平均分块存储到不同计算器上,它的意义在于读取文件时可以同时从多个主机取不同区块的文件,多主机读取比单主机读取效率要高得多得都。

3、流式数据访问,一次写入多次读写,这种模式跟传统文件不同,它不支持动态改变文件内容,而是要求让文件一次写入就不做变化,要变化也只能在文件末添加内容。

4、廉价硬件,HDFS可以应用在普通PC机上,这种机制能够让给一些公司用几十台廉价的计算机就可以撑起一个大数据集群。

5、硬件故障,HDFS认为所有计算机都可能会出问题,为了防止某个主机失效读取不到该主机的块文件,它将同一个文件块副本分配到其它某几个主机上,如果其中一台主机失效,可以迅速找另一块副本取文件。

MapReduce:

我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。

现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。

通俗说MapReduce是一套从海量源数据提取分析元素最后返回结果集的编程模型,将文件分布式存储到硬盘是第一步,而从海量数据中提取分析我们需要的内容就是MapReduce做的事了。

MapReduce的基本原理就是:

将大的数据分析分成小块逐个分析,最后再将提取出来的数据汇总分析,最终获得我们想要的内容。当然怎么分块分析,怎么做Reduce操作非常复杂,Hadoop已经提供了数据分析的实现,我们只需要编写简单的需求命令即可达成我们想要的数据。

Hadoop典型应用有:搜索、日志处理、推荐系统、数据分析、视频图像分析、数据保存等。

二、Hadoop部署

1、创建hadoop用户及密码

[root@server1 ~]# useradd -u 800 hadoop     ##创建hadoop用户uid为:800
[root@server1 ~]# ls
hadoop-2.7.3.tar.gz  jdk-7u79-linux-x64.tar.gz
[root@server1 ~]# mv *
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值