地球上经纬度变化1度是多少距离

本文详细解析了地球表面经度和纬度变化1度对应的实际距离计算方法。通过简化地球为正圆模型,推导出经线上变化1纬度约为111.11公里,以及在不同纬度下,变化1经度的距离与该纬度的余弦值成正比的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

把地球看做一个正圆,左边的圆表示在经线上变化1纬度,对应到地球表面的弧长;右边的圆表示在纬线上变化1经度,对应到地球表面的弧长。需要注意的是,左边的圆,无论经度如何变化,1纬度对应的弧度是固定的;右边的圆,在低纬度的时候,1经度对应的弧度比高纬度的时候要大。

所以根据上面的分析,这个问题应该分为两个问题考虑:

1、在经线上,变化1纬度是多少距离

为了简便计算,我们把赤道长度看做地球这个圆的周长,周长R = 40000 km

以北半球为例,北半球的纬度是0° - 90°,北半球的弧长是 40000 / 4 = 10000 km

因此纬度变化1°,对应的距离 L = 10000 / 90 ≈ 111.11 km

2、在纬线上,变化1经度是多少距离

虽然在纬线上,不同纬度变化1经度对应的距离是不一样的,但根据上面的计算方法,只需要算出不同纬度对应地球切面这个圆的周长,就可以得到不同纬度下变化1经度对应的距离。

 

图2

根据图2,只要能够得到指定纬度θ所切的圆的半径 r' ,就可以得到在这个纬度θ上所切的圆的周长:R' = 2πr' ,纬度θ上变化 1经度的距离 L = R' / 360

根据三角函数可以得到 cosθ = r' / r ,因此 r' = r * cosθ

地球周长R = 40000 km,地球半径 r = 40000 / 2π km,r' = 40000 / 2π * cosθ km

因此根据上面的推论,在纬度θ所切圆的周长 R' = 2πr' =  40000 * cosθ km

纬度θ的纬线上变化 1经度的距离 L = R' / 360 ≈ 111.11 * cosθ km

结论

经过粗略计算可以得到:

经线上,变化 1纬度 的距离 L = 10000 / 90 ≈ 111.11 km

纬度为θ的纬线上,变化 1经度 的距离 L = R' / 360 ≈ 111.11 cosθ km


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值