动态规划小结

动态规划

: 在学习算法的过程中写了该系列在进行记录,附加一些练习题的记录,欢迎各位来批评指正,一起探讨一起学习~
在这里插入图片描述

1、矩阵链问题(加括号问题)
description:
在这里插入图片描述
在这里插入图片描述
analysis:
1)分析最优解结构:
计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k]和A[k+1:j]的次序也是最优的。
矩阵连乘计算次序问题的最优解包含着其子问题的最优解,满足最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。
2)建立递推关系
①.设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。
②.递推方程
m [ i , j ] = { 0 , i=j min ⁡ i ≤ k &lt; j { m [ i , k ] + m [ k + 1 , j ] + p i − 1 p k p j } , i&lt;j m[i,j] = \begin{cases} 0, &amp; \text{i=j} \\ \min \limits_{i≤k&lt;j}\{m[i,k]+m[k+1,j]+p_{i-1}p_{k}p_j\}, &amp; \text{i&lt;j} \end{cases} m[i,j]=0,ik<jmin{m[i,k]+m[k+1,j]+pi1pkpj},i=ji<j
K的位置只有j-i种可能
3.1)计算最优值—递归求解

int RecurMatrixChain(int i, int j, int *p, int **s) {
    if(i == j) return 0;
    int u = RecurMatrixChain(i, i) + RecurMatrixChain(i+1, j)  + p[i-1]*p[i]*p[j];
    s[i][j] = i;//S[i][j]表示矩阵链A[i:j]最少乘次的断开位置
    for(int k = i+1; k < j; k++){
        int t = RecurMatrixChain(i, k) + RecurMatrixChain(k+1, j)  + p[i-1]*p[k]*p[j];
        if(t < u) {u = t; s[i][j] = k;}
    }
    return u;
}

在这里插入图片描述
3.2)计算最优值—迭代查表求解
在这里插入图片描述

	/**
	 * 非递归方法求解矩阵连乘问题最优解
	 * @param p n个矩阵的n+1个行列值,p[0,...,n]
	 * @param t 分裂点追踪矩阵,n+1阶,t[0,...,n]
	 * @return 矩阵链p的最小乘次
	 */
	public static int matrixChain(int[] p, int[][] t){

		int[][] multiplyNumMatrix = new int[p.length][p.length];//最小乘次矩阵
		for(int i=0; i<p.length; i++){
			for(int j=0; j<p.length; j++){
				multiplyNumMatrix[i][j] = -1;
				t[i][j] = -1;//追踪矩阵
			}
		}

		for(int i=0; i<multiplyNumMatrix.length; i++) multiplyNumMatrix[i][i] = 0;//一个矩阵乘次为0,即步长为1的矩阵链乘次为0

		for(int r=2; r<p.length; r++){//步长从2到矩阵链长度-1
			for(int i=1; i<=p.length-r; i++){//计算所有步长为r的链中的最小乘次链,i从1开始
				int j = i + r - 1;
				
				//multiplyNumMatrix[i][j]初始化的值为 从第一个矩阵的后面断开
				multiplyNumMatrix[i][j] = multiplyNumMatrix[i][i] + multiplyNumMatrix[i+1][j] + p[i-1]*p[i]*p[j];
				t[i][j] = i;//记录断开的位置
				for(int k=i+1; k<j; k++){//遍历所有的断开点[i+1,j-1],自底向上进行求解
					int temp = multiplyNumMatrix[i][k] + multiplyNumMatrix[k+1][j] + p[i-1]*p[k]*p[j];
					if(temp < multiplyNumMatrix[i][j]){
						multiplyNumMatrix[i][j] = temp;//记录最小乘次
						t[i][j] = k;//记录断开的位置
					}
				}
			}
		}
		return multiplyNumMatrix[1][p.length-1];
	}

利用以下递归的方法处理追踪矩阵便可以得到最终的组合方式:

	public static void traceback(int i, int j, int[][] t){
		if(i == j)	return;

		traceback(i, t[i][j], t);
		traceback(t[i][j]+1, j, t);

		System.out.print(i + "," + t[i][j] + "and");
		System.out.print(t[i][j]+1);
		System.out.print("," + j);
		System.out.println();
	}

2、最长公共递增子序列问题
1)description:
在这里插入图片描述
在这里插入图片描述
2)analysis:
在这里插入图片描述
在这里插入图片描述
有如下形式的递推方程:
c [ i , j ] = { 0 , i=0 or j=0 c [ i − 1 , j − 1 ] + 1 , i,j&gt;0;xi =yj max ⁡ { c [ i − 1 , j ] , c [ i , j − 1 ] } , i,j&gt;0;xi !=yj c[i,j] = \begin{cases} 0, &amp; \text{i=0 or j=0} \\ c[i-1,j-1] + 1, &amp; \text{i,j&gt;0;xi =yj}\\ \max\{c[i-1,j],c[i,j-1]\}, &amp; \text{i,j&gt;0;xi !=yj} \end{cases} c[i,j]=0,c[i1,j1]+1,max{c[i1,j],c[i,j1]},i=0 or j=0i,j>0;xi =yji,j>0;xi !=yj
3)计算最优值
子问题空间总共有θ(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。
得到如下递推矩阵:
在这里插入图片描述

	public static int myLongestComSeq(char[] s1,char[] s2, int[][] t, int[][] track) {
		//初始化第9行以及第0列
		for(int i=0;i<s1.length+1;i++) {
			t[i][0] = 0;
			if(i==0) {
				for(int j=0;j<s2.length+1;j++) {
					t[i][j] = 0;
				}
			}
		}
		//按照先行后列的顺序求解递推方程
		//t[i][j]存储Xi和Yj的最长公共子序列的长度,track[i][j]记录t[i][j]的值是由哪一个子问题的解得到的,后面构造最长公共子序列时需要用到。

		for(int i=1;i<s1.length+1;i++) {
			for(int j=1;j<s2.length+1;j++) {
				System.out.println("i="+i+",j="+j);
				if(s1[i-1]==s2[j-1]) {
					t[i][j] = t[i-1][j-1] + 1;
					track[i][j]=1;
				}
				else {
					t[i][j] = Math.max(t[i-1][j], t[i][j-1]);
					if(t[i-1][j]>=t[i][j-1]) {
						track[i][j]=2;
					}
					else {
						track[i][j]=3;
					}
				}
			}
		}
		//打印最终的存储结果的矩阵
		return t[s1.length][s2.length];
	}

(4)构造最优解
从track[m][n]开始,在数组b中搜索,当track[i][j]=1时,表示Xi和Yj的最长公共子序列是由Xi-1和Yj-1的最长公共子序列在尾部加上xi所得到的子序列;当track[i][j]=2时,表示表示Xi和Yj的最长公共子序列与Xi-1和Yj的最长子序列相同;当track[i][j]=3时,表示表示Xi和Yj的最长公共子序列与Xi和Yj-1的最长子序列相同。

	//打印出最长公共子序列
	public static void trackback(int t[][],int i,int j,char[] s) {
		if(i==1&&j==1) {
			return;
		}
		else if(t[i][j] == 1) {
			trackback(t,i-1,j-1,s);
			clist.add(s[i-1]);
			clist.add('>');
		}
		else if(t[i][j] == 2) {
			trackback(t,i-1,j,s);
		}
		else if(t[i][j] == 3) {
			trackback(t,i,j-1,s);
		}
	}

3、三角形最优剖分问题(加括号问题与矩阵链问题同构)
4、电路布线问题
description:
在这里插入图片描述

	/**
	 * 单层最大布线数求解算法
	 * @param perm 顺序接线柱连接点的一个排列
	 * @param size 最大布线数目存储方阵,阶为perm长度+1
	 * @return 单层最大布线数目
	 */
	public static int maxNetSet(int[] perm, int[][] size){
		int portNum = perm.length;

		//矩阵赋初值,上端0个接线柱情况(i=0),最大布线数为0
		for(int j=0; j<=portNum; j++)	size[0][j] = 0;

		for(int i=1; i<=portNum; i++){//上端接线柱序列
			for(int j=0; j<perm[i-1]; j++){//下端接线柱序列
				size[i][j] = size[i-1][j];//第i号导线无法放
			}
			for(int j=perm[i-1]; j<=portNum; j++){//下端接线柱序列
				size[i][j] = max(size[i-1][perm[i-1]-1]+1, size[i-1][j]);//取放第i号导线和不放第i号导线中的最大布线数值
			}
		}
		return size[portNum][portNum];
	}

5、图像压缩问题

6、最大子段和问题
7、投资问题
8、背包问题
9、最优二叉搜索树问题
10、流水作业问题
11、序列匹配问题
12、总结

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值