1、Description
样例
2.思路--动态规划
首先该问题由于限定了移动的方向只能向右或者向下,因此该问题具有最优
子结构的性质。不难得到规划矩阵m,其中m[i][j]表示走到地图中(i,j)的路径数,那么可以得到以下的递推方程。
m[i,j] = m[i][j-1] + m[i-1][j]
对于所给的case的递推矩阵如下所示,红色部分为初始化的结果,绿色部分为根据初始化条件递推求解的结果。
1 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 2 |
3.编程实现(java)
首先需要对规划矩阵m的第0行和第0列进行初始化,能走到的地方m[i][j]=1,不能走到的地方m[i][j]=0。然后采用两层for循环进行求解,算法的时间复杂度为O(mn),空间复杂度为而外维护的矩阵m也是O(mn)。
以下为java代码
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid.length==0)return 0;
int[][] m = new int[obstacleGrid.length][obstacleGrid[0].length];
//initial the first col
for(int i=0;i<obstacleGrid.length;i++){
if(obstacleGrid[i][0]==1)
break;
else
m[i][0] = 1;
}
//initial the first row
for(int j=0;j<obstacleGrid[0].length;j++){
if(obstacleGrid[0][j]==1)
break;
else
m[0][j] = 1;
}
for(int i=1;i<m.length;i++){
for(int j=1;j<m[0].length;j++){
if(obstacleGrid[i][j]!=1){
if(m[i-1][j]!=0){
m[i][j] += m[i-1][j];
}
if(m[i][j-1]!=0){
m[i][j] += m[i][j-1];
}
}
}
}
return m[m.length-1][m[0].length-1];
}
}