面试题14:剪绳子
题目:给你一根长度为 n 的绳子,请把绳子剪成 m 段(m、n都是整数,n > 1 并且 m > 1),每段绳子的长度记为 k[0]、k[1]、… k[m]。请问 k[0]×k[1]×…×k[m]可能的最大乘积是多少?例如,当绳子的长度为 18 时,我们把它剪成长度分别为2,3,3的三段,此时得到最大的乘积是 18。
解法一:动态规划
思路:创建一个数组 product[],第 i (i >= 3)个元素表示长度为 i 的绳子可以获得的最大乘积数。则 f(n) = max(f[i]*f[n-i])。
代码实现:
public static int solve1(int m) {
if(m < 2) return 0;
if(m == 2) return 1;
if(m == 3) return 2;
int[] products = new int[m+1];
products[1] = 1;
products[2] = 2;
products[3] = 3;
for(int i = 4; i <= m; i++) {
int max = 0;
for(int j = 1; j <= i / 2; j++) {
if(max < products[j] * products[i-j]) {
max = products[j] * products[i-j];
}
}
products[i] = max;
}
return products[m];
}
解法二:贪婪算法
思路:可以证明,n >= 5 时,2(n-2) > n,3(n-3) > n,且 3(n-3) > 2(n-2)。所以我们可以尽可能把绳子剪成长度为 3 的绳子段,不足 3 的剪成长度为 2 的绳子段。
代码实现:
public static int solve2(int m) {
if(m < 2) return 0;
if(m == 2) return 1;
if(m == 3) return 2;
int timesOf3 = m / 3;
if(m % 3 == 1) timesOf3 -= 1;
int timesOf2 = (m - 3 * timesOf3) / 2;
return (int)(Math.pow(3, timesOf3) * Math.pow(2, timesOf2));
}