面试题59:队列的最大值
题目1:滑动窗口的最大值
给定一个数组和滑动窗口的大小,请找出所有滑动窗口里的最大值。例如,如果如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}。
思路1:暴力解法
代码实现:
package Question59;
import java.util.Arrays;
public class T01 {
public static void main(String[] args) {
int[] arr = {2,3,4,2,6,2,5,1};
int n = 3;
System.out.println(Arrays.toString(solve(arr, n)));
}
public static int[] solve(int[] arr, int n) {
if(arr == null || arr.length == 0) return new int[0];
int[] result = new int[arr.length-n+1];
for(int i = 0; i < result.length; i++) {
result[i] = getMax(arr, i, i+n-1);
}
return result;
}
public static int getMax(int[] arr, int left, int right) {
int max = arr[left];
for(int i = left + 1; i <= right; i++) {
max = arr[i] > max ? arr[i] : max;
}
return max;
}
}
思路2:
- 可以用两个栈来模拟队列。即一个作为主栈,一个作为辅助栈。元素一般都存放在主栈,只有在出栈时才把主栈的元素全部都压入辅助栈,然后从辅助栈中出栈一个元素,再将辅助栈中的元素全部都压入主栈
- 可以用一个数组来记录主栈中元素的最大值。
- 将以上两种方法结合就可以用来解决此题。
代码实现:
package Question59;
import java.util.Arrays;
public class T02 {
public static void main(String[] args) {
int[] arr = {2, 3, 4, 2, 6, 2, 5, 1};
int n = 4;
System.out.println(Arrays.toString(solve(arr, n)));
}
public static int[] solve(int[] arr, int n) {
if(arr == null || arr.length < n) return new int[0];
MyStack myStack = new MyStack(n);
int[] result = new int[arr.length - n + 1];
int i = 0;
while(i < n - 1) myStack.push(arr[i++]);
for(; i < arr.length; i++) {
myStack.push(arr[i]);
result[i-n+1] = myStack.getMax();
myStack.pop();
}
return result;
}
}
class MyStack {
int[] arr1;
int[] arr2;
int[] tempMax;
int top1 = -1;
int top2 = -1;
public MyStack(int n) {
arr1 = new int[n];
arr2 = new int[n];
tempMax = new int[n];
}
public boolean isFull() {
return top1 == arr1.length - 1;
}
public boolean isEmpty() {
return top1 == -1;
}
public void push(int x) {
if(isFull()) {
throw new RuntimeException("栈已满,无法装入");
}
if(top1 >= 0) {
arr1[++top1] = x;
tempMax[top1] = x > tempMax[top1-1] ? x : tempMax[top1-1];
} else {
arr1[++top1] = x;
tempMax[top1] = x;
}
}
public int pop() {
if(isEmpty()) {
throw new RuntimeException("栈是空的,无法弹出");
}
while(top1 >= 0) arr2[++top2] = arr1[top1--];
int result = arr2[top2--];
while(top2 >= 0) push(arr2[top2--]);
return result;
}
public int getMax() {
if(top1 == -1) throw new RuntimeException("栈空,无法获取最大值");
return tempMax[top1];
}
}
思路3:双端队列
- 以{2,3,4,2,6,2,5,1}为例,2直接进入双端队列。
- 3, 因为比队头元素大,所以队内元素全部出队,3入队
- 4, 因为比队头元素大,所以队内元素全部出队,4入队
- 2,因为比队头元素小,但是有可能成为4之后的最大元素,所以2入队
- 6,因为比队头元素大,所以队内元素全部出队,6入队
- 2,比队头元素小,但是有可能成为6之后最大的元素,所以2入队
- 5,比队头元素小,但比队尾元素大,所以2出队,5入队
- 1,因为这个时候6已经在窗口外了,所以6出队,此时1有可能成为5之后最大的元素,所以1入队。
- 直接操作数据比较麻烦,所以队列中存入数据在数组中的索引。
代码实现:
package Question59;
import java.util.Arrays;
import java.util.Deque;
import java.util.LinkedList;
public class T03 {
public static void main(String[] args) {
int[] arr = {2, 3, 4, 2, 6, 2, 5, 1};
System.out.println(Arrays.toString(solve(arr, 3)));
}
public static int[] solve(int[] arr, int n) {
if(arr == null || arr.length == 0 ||arr.length < n) return new int[0];
Deque<Integer> deque = new LinkedList<>();
int[] result = new int[arr.length-n+1];
for(int i = 0; i < arr.length; i++) {
while(!deque.isEmpty() && arr[i] > arr[deque.getLast()]) deque.removeLast();
while(!deque.isEmpty() && i - deque.getFirst() >= n) deque.removeFirst();
deque.addLast(i);
if(i >= n-1) result[i-n+1] = arr[deque.getFirst()];
}
return result;
}
}
题目二:队列的最大值
请定义一个队列并实现函数max得到队列里的最大值,要求函数max、push_back和pop_front的时间复杂度都是O(1)。
思路:跟题目一类似,这个时候把窗口变为整个队列的长度即可。
代码实现:
class MaxQueue {
Queue<Integer> queue;
Deque<Integer> deque;
public MaxQueue() {
queue = new LinkedList<Integer>();
deque = new LinkedList<Integer>();
}
public int max_value() {
if(queue.isEmpty()) return -1;
else return deque.peek();
}
public void push_back(int value) {
queue.offer(value);
while(!deque.isEmpty() && value > deque.getLast()) deque.removeLast();
deque.addLast(value);
}
public int pop_front() {
if(queue.isEmpty()) return -1;
int result = queue.poll();
if(result == deque.peek()) deque.removeFirst();
return result;
}
}