有需要的朋友qq 1703105484
| Large Assignment The World of Worlde | |
Thanks to
Michael Thilscher for the base cases in this assignment
Change Log
We may make minor changes to the spec to address/clarify some outstanding issues. These may require minimal changes in your design/code, if at all. Students are strongly encouraged to check the change log regularly.
----------
- Version 1: Released on 25th March 2022
- Version 2: Released on 28th March 2022
Stages 1-4 to also prompt "Enter start word". Enter # to indicate the desired output is maximal sequences. - Version 3: Released on 29th March 2022
Stage 5 changed to be more consistent with stages 1-4.
Input, output and all word sequences are required to be alphabetically sorted.
Fixed incorrect sequence length in previous example.
Input words are not guaranteed to be all the same length.
Objectives
The assignment aims to give you more independent, self-directed practice with
- advanced data structures, especially graphs
- graph algorithms
Admin
Marks | 2 marks for stage 1 (correctness) 2 marks for stage 2 (correctness) 2 marks for stage 3 (correctness) 3 marks for stage 4 (correctness) 2 marks for stage 5 (correctness) 1 mark for style ——————— Total: 12 marks | |
Due | 11:00:00am on Monday 18 April (week 10) | |
Late | 2 marks (= ⅙ of the maximum mark) off the ceiling per day late (e.g. if you are 25 hours late, your maximum possible mark is 8) |
Context
Word and letter guessing games are as old as written languages themselves. They can be seen in everything from the television show the Wheel of Fortune on NBC/ABC to Wordle, which has been owned and published by The New York Times Company since 2022. Guessing missing letters, permutations of letters of trying to guess the correct location for letters in words are common game styles. In this assignment we will explore the foundations of such games with word sequences.
Aim
A word sequence is a sequence of k ≥ 1 words:
ω1 → ω2 → ω3 → … → ωk-1 → ωk
in which
- words are ordered alphabetically, and
- two consecutive words ωi and ωi+1 differ by only one letter:
- either they are of the same length with one letter different, e.g. tail → tall
- or one letter is missing or added, e.g. grater → greater or scent → sent.
An example is the following word sequence of length k = 8:
cold → cord → core → corse → horse → hose → host → hot
Your first task (across stage 1-4) is to develop a program to compute the longest word sequences that can be created given a collection of words. Following this (in stage 5), you are asked to complete the development of a Wordle-like shortest path check
Input
Your program should start by prompting the user to input a positive number n, then prompt the user to input n words.
Hint:
You may assume that
- the input is syntactically correct (a number n ≥1 followed by n words);
- all words are input in alphabetical order;
- each single word has a maximum of 31 letters;
- only the 26 lowercase letters a – z will be used;
- the maximum number of words will be 100.
Output
-
Task 1: For each word ω, compute and output all the words that could be used as the next word after ω in a word sequence.
-
Task 2: Compute and output
-
the maximum length of a word sequence that can be built from the words in the input,
-
all word sequences of maximum length that can be built from the set of words in the input.
-
Stage 1 (2 marks)
For stage 1, you need to demonstrate that you can build the underlying graph under the assumption that all words have the same length.
Any test for this stage will have only words of equal length and such that all the words together form a word sequence. Hence, this stage focuses on Task 1, and for Task 2 you can just output the total number of words (= maximum length of a sequence) and a sequence containing all the words (= the only maximal sequence).
Here is an example to show the desired behaviour of your program for a stage 1 test:
./words Enter a number: 6 Enter a word: lad Enter a word: lag Enter a word: lap Enter a word: tap Enter a word: tip Enter a word: top Enter start word: # lad: lag lap lag: lap lap: tap tap: tip top tip: top top: Maximum sequence length: 6 Maximal sequence(s): lad -> lag -> lap -> tap -> tip -> top
Stage 2 (2 marks)
For stage 2, you should demonstrate that you can find one maximal sequence under the assumption that all words have the same length.
Any test for this stage will be such that all words are of equal length and such that there is only one maximal word sequence.
Here is an example to show the desired behaviour of your program for a stage 2 test:
./words Enter a number: 8 Enter a word: bad Enter a word: ban Enter a word: dad Enter a word: dan Enter a word: lad Enter a word: lap Enter a word: mad Enter a word: tap Enter start word: # bad: ban dad lad mad ban: dan dad: dan lad mad dan: lad: lap mad lap: tap mad: tap: Maximum sequence length: 5 Maximal sequence(s): bad -> dad -> lad -> lap -> tap
Stage 3 (2 marks)
For stage 3, you should extend your program for stage 2 such that words can be of different length.
Tests for this stage are also guaranteed to have just one word sequence of maximum length.
Here is an example to show the desired behaviour of your program for a stage 3 test:
./words Enter a number: 6 Enter a word: east Enter a word: eat Enter a word: eats Enter a word: fast Enter a word: fist Enter a word: foist Enter start word: # east: eat fast eat: eats eats: fast: fist fist: foist foist: Maximum sequence length: 4 Maximal sequence(s): east -> fast -> fist -> foist
Stage 4 (3 marks)
For stage 4, you should extend your stage 3 program such that it outputs
- all word sequences of maximal length
- in alphabetical order.
Here is an example to show the desired behaviour of your program for a stage 4 test:
./words Enter a number: 5 Enter a word: east Enter a word: eat Enter a word: eats Enter a word: fast Enter a word: fist Enter start word: # east: eat fast eat: eats eats: fast: fist fist: Maximum sequence length: 3 Maximal sequence(s): east -> eat -> eats east -> fast -> fist
Note:
- It is a requirement that the sequences are output in alphabetical order.
Stage 5 (2 marks) - "Wordle like"
For stage 5, you should revise your stage 4 program such that it outputs
- All word sequences of minimal length
- In alphabetical order
- Given a start word and end word
Here is an example to show the desired behaviour of your program for a stage 5 test:
./words Enter a number: 5 Enter a word: east Enter a word: eat Enter a word: eats Enter a word: fast Enter a word: fist Enter start word: east Enter end word: eats Minimum sequence length: 3 Minimal sequence(s): east -> eat -> eats
Hints
If you find any of the following ADTs from the course useful, then you can, and indeed are encouraged to, use them with your program:
- linked list ADT : list.h, list.c
- stack ADT : stack.h, stack.c
- queue ADT : queue.h, queue.c
- priority queue ADT : PQueue.h, PQueue.c
- graph ADT : Graph.h, Graph.c
- weighted graph ADT : WGraph.h, WGraph.c
You are free to modify any of the six ADTs for the purpose of the assignment (but without changing the file names). If your program is using one or more of these ADTs, you should submit both the header and implementation file, even if you have not changed them.
Your main program file words.c should start with a comment: /* … */ that contains the time complexity of your program in Big-Oh notation, together with a short explanation.
Testing
We have created a script that can automatically test your program. To run this test you can execute the dryrun program for the corresponding assignment, i.e. words. It expects to find, in the current directory, the program words.c and any of the admissible ADTs (Graph,WGraph,stack,queue,PQueue,list) that your program is using, even if you use them unchanged. You can use dryrun as follows:
9024 dryrun words
Please note: Passing the dryrun tests does not guarantee that your program is correct. You should thoroughly test your program with your own test cases.
Submit
For this project you will need to submit a file named words.c and, optionally,
any of the ADTs (Graph,WGraph,stack,queue,PQueue,list) that your program is using, even if you have not changed them.
You can either submit through WebCMS3 or use a command line.
For example, if your program uses the Graph ADT and the list ADT, then you should submit:
give cs9024 assn words.c Graph.h Graph.c list.h list.c
Do not forget to add the time complexity to your main source code file words.c.
You can submit as many times as you like — later submissions will overwrite earlier ones. You can check that your submission has been received on WebCMS3 or by using the following command:
9024 classrun -check assn
Marking
This project will be marked on functionality in the first instance, so it is very important that the output of your program be exactly correct as shown in the examples above. Submissions which score very low on the automarking will be looked at by a human and may receive a few marks, provided the code is well-structured and commented.
Programs that generate compilation errors will receive a very low mark, no matter what other virtues they may have. In general, a program that attempts a substantial part of the job and does that part correctly will receive more marks than one attempting to do the entire job but with many errors.
Style considerations include:
- Readability
- Structured programming
- Good commenting
Plagiarism
Group submissions will not be allowed. Your programs must be entirely your own work. Plagiarism detection software will be used to compare all submissions pairwise (including submissions for similar assessments in previous years, if applicable) and serious penalties will be applied, including an entry on UNSW's plagiarism register.
- Do not copy ideas or code from others
- Do not use a publicly accessible repository or allow anyone to see your code
Please refer to the on-line sources to help you understand what plagiarism is and how it is dealt with at UNSW:
Help
See FAQ for some additional hints.
Finally …
Have fun! Aaron
Reproducing, publishing, posting, distributing or translating this page is an infringement of copyright and will be referred to UNSW Conduct and Integrity for action.
1703105484