自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 子载波和子信道的关系

通常可以把信道理解成资源单位,而子信道可以理解为resource block,将信道分为若干个子信道,然后每一个子信道中可能包含多个子载波,子载波用来调制信号。

2020-06-17 00:25:06 4681

原创 FDD下行信道估计的一些知识点

1.massive MIMO 基站端部署了数百根至上千根天线,能充分利用空间分集。2.与时分双工(TDD)模式相比,频分双工(FDD)模式可以提供更高的数据速率以及更宽的覆盖范围,而且FDD兼容当前的蜂窝网络。FDD下行信道估计困难的原因massive MIMO基站端大量的天线数导致下行信道估计复杂度提高。用户的移动导致信道信息是时变的。反馈开销。FDD下信道的一些性质,这些性质启发我们来进行信道预测。由于FDD不同的载波频率,在TDD存在的信道互易性不在存在。但是一条信道通道中,上下行

2020-06-14 13:47:07 2000

原创 Deep Learning for TDD and FDD Massive MIMO: Mapping Channels in Space and Frequency论文阅读

Abstract在FDD大规模MIMO中,可以将上行链路信道映射到下行链路信道,或者可以将一个天线子集的下行链路信道映射到所有其他天线的下行链路信道。作者介绍了空间和频率中信道映射的新概念,其中将一组天线和一个频段上的信道映射到另一组天线和一个频段上的信道。通过使用深度学习来找寻这种函数映射关系,结果表明,即使64个天线处于不同的频带,仅在4-8个天线处获取的信道也可以有效地映射到所有64个分布式天线上的信道。这么做的目的是,凭借深度神经网络强大的学习能力,减少mmWave和大规模MIMO系统中的训

2020-06-11 10:52:18 560

原创 Deep Learning based Downlink Channel Prediction for FDD Massive MIMO System信道估计论文阅读

FDD下行信道估计流程:1.基站通过下行链路发送导频信号。2.用户进行信道估计并且反馈CSI给基站。3.基站向用户发送数据。tips:在FDD模式下,上行信道估计比下行信道估计更加容易实现。摘要作者提出一个稀疏复值神经网络(a sparse complex-valued neural network)( SCNet)。通过训练后,SCNet用于根据估计的上行链路CSI直接预测下行链路CSI,而无需进行下行链路训练或上行链路反馈。introduction进行CSI预测的目的:基站端进行波束赋

2020-06-08 17:30:37 1725

原创 模型驱动深度神经网用于通信场景

****模型类型:1.数据驱动(date-driven)2.模型驱动(model-driven)目前使用DL来进行通信研究主要分为两种方法,数据驱动和模型驱动,数据驱动将神经网络视为一个黑箱模型,喂入数据,得到结果。模型驱动是用通信领域知识和物理机制构造模型。**数据驱动的缺点:**1.严重依赖标签数据和经验调参。通信场景下,带标签的数据的获取并不easy。2.模型的可解释性也是一个问题,这也是神经网络的一个研究方向。**模型驱动的优点:**1.训练数据容易获得。2.减小过拟合风险。3.快速部署。

2020-06-08 13:01:32 780

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除