一个特征值对应几个特征向量?
特征值非重根时,该特征值对应一个特征向量
特征值为n重根时,该特征值最多对应n个特征向量不能超过n,所以也有可能只对应一个特征向量
特征向量间的研究
特征向量结果不唯一,那么在你和我计算都对的情况下,我们的特征向量之间成什么关系?
研究3x3矩阵,秩为1、2、3的情况时,求解的特征向量
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
此例中rank(A)=1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
[[4,2,-5],
[0,0,0],
[0,0,0]]λ=0,0,4
(A-0*E)x=0
(A-0*E)化简为
[[4,2,-5],
[0,0,0],
[0,0,0]]
以x1,x2为基准,x1,x2,x3=1/5(4*x1+2*x2),x1[1,0,4/5]+x2[0,1,2/5] (最后一个为特征向量,下同)
以x2,x3为基准,x1=1/4(5*x3-2*x2),x2,x3,x2[-1/2,1,0]+x3[5/4,0,1](此例中最后一个包含两个特征向量)
以x1,x3为基准,x1,x2=-1/2(5*x3-4*x1),x3,x1[1,2,0]+x3[0,-5/2,1](A-4*E)x=0
(A-4*E)化简为
[[0,1,0],
[0,0,1],
[0,0,0]]
以x1为基准,x1,x2=0,x3=0,x1[1,0,0]
发现,二重根对应两个特征向量时,比例并不固定(相除后元素各不相同)
计算结果1
[1,0,4/5]
计算结果2
[-1/2,1,0]
计算结果3
[1,2,0]result2/result1 = [-1/2,∞,0]
result2/result3 = [-1/2,1/2,0/0]
等等,可以发现结果并不固定
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
此例中rank(A)=2
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
[[4,2,-5],
[6,4,-9],
[5,3,-7]]λ=0,0,1
(A-0*E)x=0
(A-0*E)化简为
[[2,0,-1],
[-3,1,0],
[0,0,0]]
以x1为基准,x1,x2=3*x1,x3=2*x1,x1[1,3,2]
以x2为基准,x1=1/3*x2,x2,x3=2/3*x2,x2[1/3,1,2/3]
以x3为基准,x1=1/2*x3,x2=3/2*x3,x3,x3[1/2,3/2,1](A-1*E)x=0
(A-1*E)化简为
[[1,0,-1],
[0,-1,1],
[0,0,0]]
以x1为基准,x1,x2=x3,x3=x1,x3[1,1,1]
以x2为基准,x1=x2,x2,x3=x2,x3[1,1,1]
以x3为基准,x1=x3,x2=x3,x3,x3[1,1,1]
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
此例中rank(A)=3
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
[[1,2,3],
[0,4,5],
[0,0,6]]λ=1,4,6
(A-1*E)x=0
(A-1*E)化简为
[[0,1,0],
[0,0,1],
[0,0,0]]
以x1为基准,x1,x2=0,x3=0,x1[1,0,0](A-4*E)x=0
(A-4*E)化简为
[[-3,2,0],
[0,0,1],
[0,0,0]]
以x1为基准,x1,x2=3/2*x1,x3,x1[1,3/2,0]
以x2为基准,x1=2/3*x2,x2,0,x2[2/3,1,0](A-6*E)x=0
(A-6*E)化简为
[[-5,0,8],
[0,-2,5],
[0,0,0]]
以x1为基准,x1,x2=25/16*x1,x3=5/8*x1,x3[1,25/16,5/8]
以x2为基准,x1=16/25*x2,x2,x3=2/5*x2,x3[16/25,1,2/5]
以x3为基准,x1=8/5*x3,x2=5/2*x3,x3,x3[8/5,5/2,1]
发现,二重根对应一个特征向量时,一个特征值对应一个特征向量时,比例固定
推广,即n重根对应m个特征向量(1<m<=n)时,比例不固定,n重根对应一个特征向量与一个特征值对应一个特征向量时,比例固定计算结果1
[1,3,2]
计算结果2
[1/3,1,2/3]
计算结果3
[1/2,3/2,1]
result1/result2 = [3,3,3]
result2/result3 = [2,2,2]
等等
可以发现比例固定,都是[L,L,L]
代码
附上求解秩与特征值的代码
import numpy as np
A1 = np.array([[4,2,-5],[6,4,-9],[5,3,-7]])
A2 = np.array([[1,2,3],[0,4,5],[0,0,6]])
A3 = np.array([[4,2,-5],[0,0,0],[0,0,0]])
rank = np.linalg.matrix_rank(A3)
print(rank)
eigenVal = np.linalg.eigvals(A3)
print(abs(np.round(eigenVal,3)))