参考:Friswell M I , Penny J , Garvey S D , et al. Dynamics of Rotating Machines. cambridge university press, 2010.
线性刚度、线性阻尼
只有小位移时
非线性弹簧可被线性化,kx
非线性库伦阻尼可被线性化,可等效为一个当量粘性阻尼,cx'
非线性刚度
现在考虑一个单自由度系统中,弹簧的位移与力的关系为非线性,
承受简谐激励力,计算稳态时的响应? Duffing equation
谐波平衡法
谐波平衡法将响应视为周期响应,所以响应可写作多个简谐函数的叠加,即傅里叶级数,w为激励力的频率。
该方法只能求稳态解。
求解响应
谐波平衡法,假设响应为式1
式2
将激励力改写如下式3
将三个式子带入动力学方程得到两个方程,(关于cos为0与sin为0两个方程)式4
式5
两个方程求平方再相加,消去Φ,得到一个方程式6
通过式6求解响应的幅值a,通过式5求响应的相位Φ。
线性系统,一个激励力对应一个响应(幅值与相位),非线性系统,一个激励力对应多个响应。
如图,在k m c h f0如此设置,,
为无量纲数,a随着w的变化。
w由小到大,a增大到一点(1.75处)后突然跳变,逐渐减小。
w由大到小,a增大到一点(1.22处)后突然跳变,逐渐减小。
跳变表明系统发生了质变,跳变也称分叉。
其实这是书上这么写的,但我编程并没有发现如此。
import sympy as sp
import numpy as np
# 设定参数值
m = 1 # kg
k = 10*10e3 # kN/m
c = 10 # Ns/m
h = 50*10e6 # MN/m3 M=10e6
f0 = 20 # N
# a 为待求解
a = sp.symbols('a',real=True) # 只求实数 , real=True
# 线性系统的固有频率
wn = np.sqrt(k/m)
# a随w的变化
for k in np.arange(0,3,0.005): # 频率比
w = k*wn
eq = (-m*w**2+k+3/4*h*a**2)**2*a**2+c**2*w**2*a**2-f0**2
result = sp.solve(eq,a)
result = np.array(result)*10e3 # m convert to mm
result = np.unique(np.abs(result)) # 求模 去重
print(result)
工科学生不懂没事,不懂就学,说错也没事,知错就改,但要把明确的概念来作不明确的表达就是你的问题了。
固有频率
令,得
得到两个方程
这个思路错了,但是如果按照三角公式应该也可以化简出来,最简便的就是直接设响应为复指数而不是简谐函数
令,得
化简为
二元一次方程大家都会解了
注:我在求解固有频率时,未考虑响应的相位,这不影响求解固有频率
import sympy as sp
m,c,k,w = sp.symbols('m,c,k,w')
result = sp.solve(-m*w**2+1j*w*c+k,w)
print(result)
# 注意: sympy结果 I 表示虚数
针对本问题求解固有频率
令,得
得
该非线性方程得到固有频率会随时间变化。
混沌
分岔图用来展示系统的非线性和混沌效应
激励力为简谐函数,频率w(角频率)
>129或<96时,响应为简谐函数,频率w
129>w>96时,如w=100,响应为周期函数,即复合的简谐函数,包括了基频与次倍频;如w=120,响应为非周期函数,是混沌的。w=100
w=120
通过庞加莱图来分析w=120时的混沌效应
计算稳态位移与速度,注意:作图时,速度与位移采样率相同
如果是周期响应,庞加莱图绘制成的是一个固定形状。
非线性阻尼
(线性阻尼系统的在不受力时,没有响应,但非线性阻尼系统并非如此。)
自激系统:给系统初始条件,使其自由振动,振动会越来越大,因为系统有负阻尼。
Van der Pol equation
limit cycle:由于系统还有正阻尼,使得振动不会无限大,最终振动为一稳态振动。
菱形为初始条件,不论初始条件多少,最终稳态运动为limit sycle(实线圈)
术语
sub-harmonics 低阶
super-harmonics 高阶
chaotic混沌
harmonic-balance method谐波平衡法
trigonometric formulate三角公式
be truncated被截断
Duffing
bifurcation diagram分岔图
to name just three 仅举三个例子
Poincare map庞加莱图
quasiperiodic准周期
chaotic混沌
phase plane相平面
self—excited system自激系统
庞加莱被公认是19世纪后和20世纪初的领袖数学家,是继高斯之后对于数学及其应用具有全面知识的最后数学家。