猴子补丁是一项允许在运行时更改对象行为的技术。 它是一个非常有用的功能,但它也可能使你的代码更难以理解和调试,因此,在实现猴子补丁程序时必须谨慎。
猴子补丁的用法
猴子补丁与Python中的灵活性紧密相关。 自定义对象是可变的,因此可以替换其属性而无需创建该对象的新副本。
class A:
def speak(self):
return "hello"
def speak_patch(self):
return "world"
我们在最开始的地方做了猴子补丁,即使用speak_patch
这个函数去取代掉原来的speak
。这时我们调用speak
函数就变成了调用speak_patch
函数了。
>>> A.speak = speak_patch # 做了猴子补丁,替换了原来的speak函数
>>> c = A()
>>> c.speak()
world
再来看一个例子:
我们定义一个类,在类中我们不实现__len__
方法,而在类外我们实现一个可以计算列表长度的方法。
class A:
def __init__(self, array):
self._list = array
# def __len__(self):
# return len(self._list)
def length(obj):
return len(obj._list)
下面我们做一个猴子补丁,将类中的__len__
方法替换为length
函数。
>>> A.__len__ = length
>>> a = A([1, 2, 3])
>>> len(a)
3
注意:该有的参数还是要有,但名称可以不一样,类中原本应该是是self
,在类外的实现可以任意写 (例如obj
),因为会在做猴子补丁的时候自己去对应起来。但是取长度时,就必须要写obj._list
。
可以看到,上面类中并没有定义__len__
的方法,但当我们做了猴子补丁以后,仍然可以正确的调用len
函数。经过以上的部分,就可以成功的在运行时,实际上实现类中的__len__
方法。那为什么不一开始就实现 __len__
呢?像是:
class A:
def __init__(self, array):
self._list = array
def __len__(self):
return len(self._list)
原因是我们不希望去修改类中的源代码,而后者的修改也只是暂时性的,像用在测试时。
当然,猴子补丁不会允许你任意的使用,它是有限制的,它限制你不能给内置类型打补丁。比如要给str
这个对象打补丁,就会报错。
>>> def find(self, sub, start=None, end=None):
... return 'ok'
...
>>> str.find = find
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't set attributes of built-in/extension type 'str'
这里的原因是可以保证内置的功能都是原本的,避免有人去打补丁后,导致后续一堆奇怪的问题。需要切记,猴子补丁不可乱用!
types.MethodType
很类似猴子补丁,来看一个types.MethodType
的例子,
import types
class A:
def speak(self):
return "hello"
def speak_patch(self):
return "world"
>>> a = A()
>>> a.speak = types.MethodType(speak_patch, a)
>>> a.speak()
'world'
>>> a2 = A()
>>> a2.speak() # 对于a2我们并没有修改,所以仍然是hello
'hello'
既然提到了types.MethodType
,那也就来简单的学一下。
types.MethodType
的作用之—:添加实例方法
我们先定义一个类和一个函数
import types
class cla(object):
def __init__(self, name, age):
self.name = name
self.age = age
def prii(self):
print("pri")
def f1(self):
print("f1")
我们利用types.MethodType
来为类添加实例方法f1
。
>>> c = cla("zhangsan", 18)
>>> c.prii()
pri
>>> c.f1 = types.MethodType(f1, c)
>>> c.f1()
f1
>>> func = types.MethodType(f1, c)
>>> func()
f1
可以看到,func()
一样可以正常的执行。所以这个动态添加的办法和原生的属性还是有所区别的。执行了types.MethodType(f1,c)
之后,相当于产生了一个特殊返回值,这个返回值指向f1
函数,里面已经被默认传递了c
对象作为参数,只要使用这个返回值,就可以当做是调用了对象的方法。c.f1=types.MethodType(f1,c)
这么写之后,再调用c.f1()
,完全是为了字面上的符合,符合这个操作的原意而已。
types.MethodType
的作用之二:添加静态方法
在使用静态方法时,类中的self
将不会再进行传值,此时,静态方法已经和类没什么关系了。 需要通过修饰器@staticmethod
来进行修饰,静态方法不需要多定义参数。
还是上面定义的cla
类和f1
函数,我们接下来定义一个静态方法test
。
@staticmethod
def test():
print(":static")
>>> c = cla("zhangsan", 18)
>>> c.test = test()
>>> c.test()
:static
这里不需要绑定,因为静态方法不需要任何的参数,只要赋值了就直接用。但注意需要使用类名来调用。
types.MethodType
的作用之三:添加类方法
下面定义一个类方法clsm
,类方法也是直接赋值调用就行。
@classmethod
def clsm(cls):
print("classmethod call")
>>> cla.clsm = clsm
>>> cla.clsm()
classmethod call
动态添加可以做到什么呢?一款APP,在没有进行整个APP的情况下,里面的部分功能变了。即我部分的功能代码存在一个文件中,我在后台默默更换这些文件,下次你再打开APP,对应的功能或者样式就变了。这是不是就是类似猴子补丁呢?
什么时候用去猴子补丁?
猴子补丁非常强大,它显示了Python的灵活性。下面就来思考一下何时用猴子补丁。
作为一般规则,最好不要打猴子补丁。例如,如果要更改程序的行为,则可以为要更改的类定义子类。猴子补丁的问题在于程序的行为变得更加难以理解,要追溯行为的变化变得非常复杂。但是,有时可能会有很大的好处。例如,使用numpy
计算快速傅里叶变换可能比使用其他实现慢。想象一下你想使用PyFFTW
,但是不想重写所有程序。这时你可以猴子补丁你的代码!
请参阅下面的示例:
import pyfftw
import numpy
numpy.fft = pyfftw.interfaces.numpy_fft
现在,无论何时使用numpy
提供的FFT
例程,它们都会被PyFFTW
的例程自动替换。这可能会对你的程序产生巨大的影响,并且只用了一行代码!
另外,常见的情况是测试。有时,你想在缺乏某些功能的环境中测试代码,或者由于测试实际上是在修改实时数据库,因此想防止这种情况。在这种情况下,可以在进行测试之前更改与数据库通信的方法。 即在测试程序时先避免与设备通信。
总之,究竟如何实现此行为将取决于具体情况。