python实现高德POI点(GCJ-02)火星坐标批量转换为WGS84

最近整理项目的时候发现了之前用过的火星坐标转WGS84坐标的python代码,记录一下。

火星坐标

GCJ-02(G-Guojia国家,C-Cehui测绘,J-Ju局),又被称为火星坐标系,是一种基于WGS-84制定的大地测量系统,由中国国测局制定。此坐标系所采用的混淆算法会在经纬度中加入随机的偏移。国家规定,中国大陆所有公开地理数据都需要至少用GCJ-02进行加密,也就是说我们从国内公司的产品中得到的数据,一定是经过了加密的。绝大部分国内互联网地图提供商都是使用GCJ-02坐标系,包括高德地图谷歌地图中国区等。

数据

数据是我从高德地图API中爬取的一些POI点,代码参考根据城市名和分类名爬取对应的POI数据(基于高德地图),实测直接可用,在高德上申请一个开发key即可。

这里注意爬取的x和y都是str数据类型,如果要直接导入Arcgis中记得转换为将单元格格式转为数值,下面是我爬取的武汉市的银行POI数据

爬取的武汉市银行POI数据

实现代码

#!/usr/bin/python
# -*- coding: UTF-8 -*- 
import pandas as pd
import json
import math
import os
import csv

x_pi = 3.14159265358979324 * 3000.0 / 180.0
pi = 3.1415926535897932384626  # π
a = 6378245.0  # 长半轴
ee = 0.00669342162296594323  # 扁率

def gcj02towgs84(lng, lat):
    """
    GCJ02(火星坐标系)转GPS84
    :param lng:火星坐标系的经度
    :param lat:火星坐标系纬度
    :return:
    """
    if out_of_china(lng, lat):
        return lng, lat
    dlat = transformlat(lng - 105.0, lat - 35.0)
    dlng = transformlng(lng - 105.0, lat - 35.0)
    radlat = lat / 180.0 * pi
    magic = math.sin(radlat)
    magic = 1 - ee * magic * magic
    sqrtmagic = math.sqrt(magic)
    dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi)
    dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi)
    mglat = lat + dlat
    mglng = lng + dlng
    return [lng * 2 - mglng, lat * 2 - mglat]

def transformlat(lng, lat):
    ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \
        0.1 * lng * lat + 0.2 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lat * pi) + 40.0 *
            math.sin(lat / 3.0 * pi)) * 2.0 / 3.0
    ret += (160.0 * math.sin(lat / 12.0 * pi) + 320 *
            math.sin(lat * pi / 30.0)) * 2.0 / 3.0
    return ret

def transformlng(lng, lat):
    ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \
        0.1 * lng * lat + 0.1 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lng * pi) + 40.0 *
            math.sin(lng / 3.0 * pi)) * 2.0 / 3.0
    ret += (150.0 * math.sin(lng / 12.0 * pi) + 300.0 *
            math.sin(lng / 30.0 * pi)) * 2.0 / 3.0
    return ret

def out_of_china(lng, lat):
    """
    判断是否在国内,不在国内不做偏移
    :param lng:
    :param lat:
    :return:
    """
    if lng < 72.004 or lng > 137.8347:
        return True
    if lat < 0.8293 or lat > 55.8271:
        return True
    return False

if __name__ == '__main__':
    path = r"G:/gaode/"
    df = pd.read_excel(r"G:\gaode\武汉_商场.xls")
    if not os.path.exists(path):
        os.mkdir(path)
    with open(path+"武汉_商场_84.csv","w",newline="") as file:
        writter = csv.writer(file)
        writter.writerow(["经度_84", "纬度_84", "名称"])
        for index,row in df.iterrows():
            i = gcj02towgs84(row["x"],row["y"])
            writter.writerow([i[0],i[1],row["name"]])
        file.close()
    print("坐标转换完毕")

结束后就可以得到以下的转换结果啦(是的我贴的是商场POI数据的转换结果233)
转换坐标后的结果
在ArcGIS里打开看一下结果,红色是转换后的点,绿色是转换前的原始点。
在这里插入图片描述

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页