图像质量的客观评估指标PSNR与SSIM

  • PSNR
  • SSIM
  • 代码
  • 参考文献

1:PSNR

PSNR是最为常用的图像质量评估指标: 
这里写图片描述

其中K为图像对应二进制位数,一般为8。MSE为均方误差,计算公式为: 
这里写图片描述

2:SSIM

SSIM[1]主要用来衡量图像结构完整性,是另一种比较常用的客观评估指标。实际应用中,一般用滑动窗口对图像进行分块,这里的滑动窗口一般为高斯窗口,并用高斯加权计算每个窗口的均值、方差和协方差。这样每块的SSIM计算如下: 
这里写图片描述 
其中: 
这里写图片描述 
文献[1]给出公式中默认参数:窗口w为11*11的高斯窗口;其中K1=0.01,K2=0.02,L=255,C1=(K1*L)^2,C2=(K2*L)^2

3:代码

问题在于给定了一副彩色图片,彩色图片有RGB三通道,如何计算其PSNR或者SSIM值,方法有以下三种(以PSNR为例): 
(1)计算彩色图像RGB三通道每一通道的PSNR值,然后求均值 
(2)计算彩色图像RGB三通道每一通道的MSE值,求平均,然后再代入求PSNR 
(3)求图像YUV空间中的Y分量,仅仅计算Y分量的PSNR值(YUV空间中Y表示亮度信息,UV分别为浓度偏移分量,在视频编解码中比较常用)

其中方法(2)和(3)比较常用,下面给出方法(2)和(3)的c++代码:

#include <iostream>
#include <vector>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <opencv2\core\core.hpp>
using namespace std;
using namespace cv;


double getPSNR(const Mat& I1, const Mat& I2){
    Mat s1;
    absdiff(I1, I2, s1);
    s1.convertTo(s1, CV_32F);
    s1 = s1.mul(s1);
    Scalar s = sum(s1);
    double sse = s.val[0] + s.val[1] + s.val[2];
    if(sse <= 1e-10)
        return 0;
    else{
        double mse = sse/(double)(I1.channels()*I1.total());
        double psnr = 10.0*log10(255*255/mse);
        return psnr;
    }

}

Scalar getMSSIM(const Mat& i1, const Mat& i2){
    const double C1=6.5025, C2 = 58.5225;
    int d = CV_32F;

    Mat I1, I2;
    i1.convertTo(I1, d);
    i2.convertTo(I2, d);
    Mat I2_2 = I2.mul(I2);     // I2^2
    Mat I1_2 = I1.mul(I1);      //I1^2
    Mat I1_I2 = I1.mul(I2);     // I1*I2

    Mat mu1, mu2;
    GaussianBlur(I1, mu1, Size(11, 11), 1.5);
    GaussianBlur(I2, mu2 ,Size(11, 11), 1.5);

    Mat mu1_2 = mu1.mul(mu1);
    Mat mu2_2 = mu2.mul(mu2);
    Mat mu1_mu2 = mu1.mul(mu2);

    Mat sigma1_2, sigma2_2, sigma12;

    GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
    sigma1_2 -= mu1_2;

    GaussianBlur(I2_2, sigma2_2, Size(11,11), 1.5);
    sigma2_2 -= mu2_2;

    GaussianBlur(I1_I2, sigma12, Size(11,11), 1.5);
    sigma12 -= mu1_mu2;

    Mat t1, t2, t3;
    t1 = 2*mu1_mu2 + C1;
    t2 = 2*sigma12 + C2;
    t3 = t1.mul(t2);

    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1.mul(t2);

    Mat ssim_map;
    divide(t3, t1, ssim_map);
    Scalar mssim = mean(ssim_map);
    return mssim;
}


int main(){
    Mat i1 = imread("E:\\leetcode\\calcEvaluation\\1.jpg");
    Mat i2 = imread("E:\\leetcode\\calcEvaluation\\2.jpg");
    if(!i1.data || !i2.data){
        cout << "图片路径有误!" << endl;
        return -1;
    }

    cout << "PSNR: " << getPSNR(i1, i2) << endl;
    Scalar result = getMSSIM(i1, i2);
    if(i2.channels() == 3)
        cout<< "SSIM: " << (result.val[0]+ result.val[1]+result.val[2])/3 << endl;
    else cout << "SSIM: " << result.val[0] << endl;

    Mat i11, i22;
    cvtColor(i1, i11, COLOR_BGR2YUV);
    cvtColor(i2, i22, COLOR_BGR2YUV);
    vector<Mat> mv1, mv2;
    split(i11, mv1);
    split(i22, mv2);
    cout << "Y 分量PSNR: " << getPSNR(mv1[0], mv2[0]) << endl;
    cout << "Y 分量SSIM: " << getMSSIM(mv1[0], mv2[0]).val[0] << endl;
    return 0;
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96

最后参考网友[2]给出的一份matlab代码,仅针对方法(3)中的Y分量。 
psnr.m:

function [PSNR, MSE] = psnr(X, Y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 计算峰值信噪比PSNR
% 将RGB转成YCbCr格式进行计算
% 如果直接计算会比转后计算值要小2dB左右(当然是个别测试)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if size(X,3)~=1   %判断图像时不是彩色图,如果是,结果为3,否则为1
   org=rgb2ycbcr(X);
   test=rgb2ycbcr(Y);
   Y1=org(:,:,1);
   Y2=test(:,:,1);
   Y1=double(Y1);  %计算平方时候需要转成double类型,否则uchar类型会丢失数据
   Y2=double(Y2);
 else              %灰度图像,不用转换
     Y1=double(X);
     Y2=double(Y);
 end

if nargin<2    
   D = Y1;
else
  if any(size(Y1)~=size(Y2))
    error('The input size is not equal to each other!');
  end
 D = Y1 - Y2; 
end
MSE = sum(D(:).*D(:)) / numel(Y1); 
PSNR = 10*log10(255^2 / MSE);
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

ssim.m

function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names ap pearon all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
%        (2) img2: the second image being compared
%        (3) K: constants in the SSIM index formula (see the above
%            reference). defualt value: K = [0.01 0.03]
%        (4) window: local window for statistics (see the above
%            reference). default widnow is Gaussian given by
%            window = fspecial('gaussian', 11, 1.5);
%        (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
%            If one of the images being compared is regarded as 
%            perfect quality, then mssim can be considered as the
%            quality measure of the other image.
%            If img1 = img2, then mssim = 1.
%        (2) ssim_map: the SSIM index map of the test image. The map
%            has a smaller size than the input images. The actual size:
%            size(img1) - size(window) + 1.
%
%Default Usage:
%   Given 2 test images img1 and img2, whose dynamic range is 0-255
%
%   [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
%   User defined parameters. For example
%
%   K = [0.05 0.05];
%   window = ones(8);
%   L = 100;
%   [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
%   mssim                        %Gives the mssim value
%   imshow(max(0, ssim_map).^4)  %Shows the SSIM index map
%
%========================================================================


if (nargin < 2 | nargin > 5)
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) | (N < 11))   % 图像大小过小,则没有意义。
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);        % 参数一个标准偏差1.5,11*11的高斯低通滤波。
   K(1) = 0.01;                                                                      % default settings
   K(2) = 0.03;                                                                      %
   L = 255;                                  %
end

if (nargin == 3)
   if ((M < 11) | (N < 11))
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
                   ssim_index = -Inf;
                   ssim_map = -Inf;
                   return;
      end
   else
           ssim_index = -Inf;
           ssim_map = -Inf;
           return;
   end
end

if (nargin == 4)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
                   ssim_index = -Inf;
                   ssim_map = -Inf;
                   return;
      end
   else
           ssim_index = -Inf;
           ssim_map = -Inf;
           return;
   end
end

if (nargin == 5)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
                   ssim_index = -Inf;
                   ssim_map = -Inf;
                   return;
      end
   else
           ssim_index = -Inf;
           ssim_map = -Inf;
           return;
   end
end

if size(img1,3)~=1   %判断图像时不是彩色图,如果是,结果为3,否则为1
   org=rgb2ycbcr(img1);
   test=rgb2ycbcr(img2);
   y1=org(:,:,1);
   y2=test(:,:,1);
   y1=double(y1);
   y2=double(y2);
 else 
     y1=double(img1);
     y2=double(img2);
 end
img1 = double(y1); 
img2 = double(y2);
% automatic downsampling
%f = max(1,round(min(M,N)/256));
%downsampling by f
%use a simple low-pass filter
% if(f>1)
%     lpf = ones(f,f);
%     lpf = lpf/sum(lpf(:));
%     img1 = imfilter(img1,lpf,'symmetric','same');
%     img2 = imfilter(img2,lpf,'symmetric','same');
%     img1 = img1(1:f:end,1:f:end);
%     img2 = img2(1:f:end,1:f:end);
% end

C1 = (K(1)*L)^2;    % 计算C1参数,给亮度L(x,y)用。    C1=6.502500
C2 = (K(2)*L)^2;    % 计算C2参数,给对比度C(x,y)用。  C2=58.522500 
window = window/sum(sum(window)); %滤波器归一化操作。


mu1   = filter2(window, img1, 'valid');  % 对图像进行滤波因子加权  valid改成same结果会低一丢丢
mu2   = filter2(window, img2, 'valid');  % 对图像进行滤波因子加权

mu1_sq = mu1.*mu1;     % 计算出Ux平方值。
mu2_sq = mu2.*mu2;     % 计算出Uy平方值。
mu1_mu2 = mu1.*mu2;    % 计算Ux*Uy值。

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;  % 计算sigmax (标准差)
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;  % 计算sigmay (标准差)
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;   % 计算sigmaxy(标准差)

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
   denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);

return

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222

参考文献

[1] Image Quality Assessment: From Error Visibility to Structural Similarity 
[2]http://download.csdn.net/download/xiaohaijiejie/9058653 
[3]http://blog.csdn.net/xiaxiazls/article/details/47952611

### 回答1: PSNR(峰值信噪比)和SSIM(结构相似性)是图像质量评价的两个重要指标PSNR是一种用于度量图像质量指标,通过计算原始图像与经过压缩或处理后的图像之间的峰值信噪比来评估图像的失真程度。峰值信噪比是指信号的最大可能功率与表示这个信号的系统的噪声功率之比。PSNR计算公式为: PSNR = 10 * log10((最大可能像素值)² / MSE) 其中最大可能像素值是指原始图像中像素的最大值,MSE是均方差,用于度量两个图像之间的差异程度。 SSIM是一种统计方法,用于比较两个图像的结构相似性。它不仅考虑图像亮度信息,还考虑图像的对比度和结构信息。SSIM计算过程中引入了三个关键的组成部分:亮度相似性、对比度相似性和结构相似性。SSIM的计算公式为: SSIM(x, y) =(2μxμy + C1)(2σxy + C2)/(μx² + μy² + C1)(σx² + σy² + C2) 其中,x和y分别代表两个图像,μx和μy分别代表x和y的平均值,σx²和σy²分别代表x和y的方差,σxy代表x和y的协方差,C1和C2是常数用来稳定计算PSNRSSIM是常用的图像质量评价指标PSNR主要用于比较两个图像之间的失真程度,数值越大表示失真越小;而SSIM主要用于比较两个图像之间的结构相似性,数值越接近1表示结构相似性越高。综合应用这两个指标可以更全面地评价图像质量。 ### 回答2: PSNR(Peak Signal-to-Noise Ratio)是一种用于评估图像质量指标,它通过比较原始图像与经过压缩或失真处理后的图像之间的均方误差,来衡量图像的失真程度。PSNR计算公式为: PSNR = 10 * log10 (MAX^2 / MSE) 其中 MAX 表示像素数据的最大可能取值,MSE 表示均方误差,即原始图像与失真图像之间每个像素值差的平方的均值。PSNR的值通常以分贝(dB)为单位,数值越大表示图像质量越好。 而 SSIM(Structural Similarity Index)是一种比较图像结构相似性的指标,它主要关注图像亮度、对比度和结构等方面。SSIM的计算公式为: SSIM = (2 * μx * μy + C1) * (2 * σxy + C2) / (μx^2 + μy^2 + C1) * (σx^2 + σy^2 + C2) 其中 μx 和 μy 表示原始图像和失真图像亮度平均值,σx 和 σy 表示原始图像和失真图像的方差,σxy 表示原始图像和失真图像的协方差,C1 和 C2 是常数,用于避免分母为零。SSIM的取值范围为[-1, 1],值越接近1表示图像质量越好。 PSNRSSIM是两种常用的图像质量评价指标PSNR主要关注图像的失真程度,适用于需要精确度和灵敏度的场景;而SSIM则关注图像的结构相似性,适用于需要保留图像细节和结构的场景。综合使用PSNRSSIM可以更全面地评价图像质量。 ### 回答3: 图像质量评价指标是衡量图像质量好坏的方法,其中PSNRSSIM是两个常用的评价指标PSNR(Peak Signal-to-Noise Ratio)是一种用于测量图像失真程度的指标。它计算图像与原始图像之间的峰值信噪比,即原始图像中最大像素值与重建图像与原始图像之间的均方误差的比值。PSNR值越高,表示失真越小,图像质量越好。常用PSNR评价图像压缩算法的效果,如JPEG压缩等。 SSIM(Structural Similarity Index)是一种用于测量图像结构相似性的指标。它考虑了亮度、对比度和结构三个因素间的差异,并综合这些因素计算相似性指数。SSIM值越接近1,表示两幅图像越相似,图像质量越好。SSIM主要用于评价图像处理算法的效果,如去噪、增强等。 PSNRSSIM都是客观评价指标,对失真图像与原始图像之间的差异进行量化。它们都有各自的使用范围和场景,没有绝对优劣之分。在评价图像质量时,可以综合考虑PSNRSSIM,以及其他评价指标,综合评估图像的视觉感知质量。 需要注意的是,PSNRSSIM仅能从一定程度上反映图像质量,对于某些特殊场景或者人眼难以察觉的差异可能会存在局限性。因此,在实际应用中,还需要结合人眼主观评价、其他更多的评价指标以及具体的应用需求来全面评价图像质量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值