- 博客(1058)
- 收藏
- 关注
原创 【异常错误】服务器运行程序后的结果无法正常写入txt文件
今天在使用云服务器的时候,出现了一个很奇怪的bug,log打印正常,在我的本地主机可以成功存入txt文件,在云服务器上简单测试也可以写入到txt,但是在运行我的程序以后,经过一段时间,程序执行结束会自动写入结果,这时候它就不写入到txt文件。看到,当时我租的服务器太垃圾了,只有16G的内存,所以写入到一定程度,内存会把我原来的数据清除,导致无法写入txt文件。看了两遍代码,发现没有什么问题,但是到底问题出在哪里了呢?租一个好一点的服务器就行了(内存大一些的)
2023-10-01 14:42:13
50
原创 自回归策略是什么
自回归策略(Autoregressive Strategy)通常应用于序列生成模型,例如自然语言处理中的文本生成模型。自回归策略的一个特点是,生成的每一个元素都依赖于之前生成的所有元素,这使得模型能够捕捉序列中的长距离依赖关系。简单来说,自回归策略就是模型基于已经生成的序列部分来预测下一个元素。这个过程不断迭代,直到生成整个序列。
2023-09-28 17:09:19
57
原创 【文献阅读】Pocket2Mol : 基于3D蛋白质口袋的高效分子采样 + CrossDocked数据集说明
深度学习在药物设计方面取得了巨大成功。生成模型主要思想是在紧凑的低维空间中高效地表示所有收集的化学结构,并通过扰乱隐藏值来采样新的候选药物。这些模型的输出可以是一维化学描述符、二维图(graph)和3D结构。然而,在分子水平上,小分子仅通过与特定的蛋白质口袋结合来抑制或激活特定的生物学功能。因此,基于口袋的药物设计受到越来越多的关注。更具体地说,给定目标蛋白的 3D 结合口袋,这些模型知道 3D 口袋的几何信息,并相应地生成与口袋结合的分子。
2023-09-27 10:46:32
262
原创 【异常错误】nan错误:training tensor(nan, device=‘cuda:0‘, dtype=torch.float64, grad_fn=<MseLossBackward>
训练过程中出现了nan,
2023-09-26 16:12:01
18
原创 rdkit Recap、BRICS将smiles切分为片段(fragment)
【代码】rdkit Recap、BRICS将smiles切分为片段(fragment)
2023-09-21 19:25:16
55
原创 使用ipdb方式进行debug
在遇到多核心执行的时候,在pycharm中有可能会出现执行错误的情况,此时使用ipdb的方式进行debug可能比较好。
2023-09-17 21:25:59
83
原创 Linux移动文件夹(文件)到其他文件夹 / 复制到其他文件夹 【cp / mv命令】
运行命令之后packageB文件夹下就有packageA文件夹了。
2023-09-16 20:46:31
225
原创 恒源云OSS上传文件到服务器(OSS/FileZilla/Xftp)对比
你要是上传大文件,肯定是需要压缩,然后使用OSS的,因为比较快,Xftp有点慢。
2023-09-15 11:16:24
52
原创 【异常错误】detected dubious ownership in repository ****** is owned by: ‘
导致我对git后的内容进行修改时,总是不显示修改哪里了,此时应该在你要git到的文件夹下,然后点击“git base here”,然后gitclone你的git库,这样就不错了。2、卸载github copilot。
2023-09-15 09:50:02
223
原创 使用endnote编辑Nature Communication的参考文献格式
2、放入style中“E:\EndNote X9\Styles”3、在word中的选用这个style。
2023-09-05 11:42:25
78
原创 怎么查看docking后的配体和哪些氨基酸连接在一起了?(氨基酸对照表)
例如上述这张图,你想知道配体和那些氨基酸连接在一起了?此时直接茶轩序号前面的三个字母就可以了,按照下面的对照表进行描述。
2023-09-02 18:58:53
58
原创 化学中的各种基团(羧基、酰胺、吡喃、联苯结构)
化学式–C(=O)OH,是羧酸所具有的官能团。一般而言,羧基上的氢有较大的电离倾向,从而使羧酸在水溶液中显酸性。羧酸根负离子所具有共轭结构可以看作是氢易电离的潜在动力。
2023-09-02 15:42:17
271
原创 jupyter切换conda虚拟环境
进入你想使用的虚拟环境:在你想使用的conda虚拟环境中:在虚拟环境中安装jupyter: 此时我们已经把该安装的东西都安装好了,退出虚拟环境,我们需要重启一下jupyter。重启后,打开笔记点击Kernel → Change kernel就可以切换虚拟环境了。 如果是多个虚拟环境,我们可以通过右上角看到我们当前在哪个环境下面。秒切换环境,真是方便极了。Jupyter Notebook切换conda虚拟环境_jupyterhub conda选项_IT_xiao_bai的博客-CSDN博客
2023-08-10 20:03:42
835
原创 【jupyter异常错误】Failed to load model class ‘ColormakerRegistryModel‘ from module ‘nglview-js-widgets‘
后来一直不行............总是出现错误,原来是因为我没有将“下面两个命令有一个成功就可以了。”删除,应该直接到“
2023-08-10 19:53:44
176
原创 【jupyter异常错误】Kernel started:No module named ipykernel_launcher
执行之后提示已经安装,但是执行代码依然报错。
2023-08-10 19:23:53
798
原创 Discovery studio构建药效团(Pharmacophore)的方式
一类是具有相同药理作用的类似物,它们具有某种基本结构,即相同的化学结构部分如磺胺类药物、局麻药、受体阻断剂、拟肾上腺素药物等;另一类是一组化学结构完全不同的分子,但它们以相同的机理与同一受体结合,产生同样的药理作用,如己烯雌酚的化学结构比较简单,但因其立体构象与雌二醇相似,也具有雌激素样作用。药效团是基于药效特征元素为基础建立的模型。药效特征元素主要分为七种,包括: 氢键供体、氢键受体、正负电荷中心、芳环中心、疏水基团、亲水基团以及几何构象体积冲撞。一个有效的药效团模型,一般包含3-5个有效的药效团元素。
2023-08-09 16:57:58
147
原创 pan assay interference compounds (PAINS)
这些片段可能与多个目标作用,导致假阳性结果。为了避免药物研发中的误导性结果,科学家们通常会对候选化合物库进行筛选,剔除其中包含PAINS片段的化合物。PAINS大致分为两类:对第一类来说,化合物在测试浓度下在溶液中形成胶体,蛋白被包裹在胶体中,底物因此无法接近酶的活性中心,因此这些化合物属于假阳性化合物;对于第二类来说,这些化合物的活性基团可以与蛋白受体形成共价作用,进而导致受体受到抑制,但这种抑制很难逆转,同时这些具有PAINS性质的配体可以与大多数靶点发生反应,缺乏特异性。
2023-08-07 13:42:54
15
原创 Uni-Dock进行批量分子对接
最后用于分子对接的受体的pdbqt文件是要去除小分子的,可以使用pymol去除小分子,从而得到没有小分子的配体文件。批量docking亲和力计算:(docking/docking_affinity_score.py)
2023-08-05 18:11:52
120
原创 绘图常用配色
基础选色:223,158,155 153,186,223 216,231,202 153,205,206 153,154,205 255,208,233 #DF9E9B #99BADF #D8E7CA #99CDCE #999ACD #FFDDE9 常用配色:
2023-08-05 12:26:47
14
原创 Pareto优化和分层优化的区别?Pareto改进是什么?分层优化的过程可以看成Pareto改进吗?
在这种方法中,目标被分成不同的层次或优先级。首先优化最高优先级的目标,然后在满足这些目标的约束下优化次优先级的目标,依此类推。:目标编程是一种将目标分为主要目标和次要目标的方法。主要目标被优先优化,而次要目标则在主要目标达到一定水平后才被考虑。:Pareto优化不是寻找单一最优解,而是寻找一组解,这些解在所有目标之间没有劣解。这组解反映了目标之间可能的权衡。
2023-08-03 20:29:49
94
原创 主动学习、半监督学习、它们之间的区别?
含义:有的时候,有类标的数据比较稀少而没有类标的数据是相当丰富的,但是对数据进行人工标注又非常昂贵,这时候,学习算法可以主动地提出一些标注请求,将一些经过筛选的数据提交给专家进行标注。这个筛选过程也就是主动学习主要研究的地方了,怎么样筛选数据才能使得请求标注的次数尽量少而最终的结果又尽量好。主动学习的过程大致是这样的,有一个已经标好类标的数据集K(初始时可能为空),和还没有标记的数据集U,通过K集合的信息,找出一个U的子集C,提出标注请求,待专家将数据集C标注完成后加入到K集合中,进行下一次迭代。特点:半监
2023-08-03 13:07:26
166
原创 Linux查看已用磁盘空间大小(du -sh) / 查看占用磁盘大小(df -hl)
df -h似乎没有什么用 ......结尾的文件或目录,并返回它们的大小。下的文件或目录的所占用磁盘的大小。
2023-07-31 13:14:58
86
原创 获取非叶子节点的grad(retain_grad()、hook)
不过我感觉“hook”比“retain_grad()”要麻烦.....,所以我感觉还是使用“retain_grad()”吧。
2023-07-30 18:37:50
255
原创 param.grad、requires_grad、grad_fn、grad/梯度为None?
计算图中的节点分为叶子节点和非叶子节点,叶子节点可以理解成不依赖其他tensor的tensor(例如b = a+1,那么b就是叶子节点),在使用backward()函数进行反向传播计算tensor的梯度时,并不是计算所有的tensor的梯度,而是计算满足这几个条件的tensor的梯度,子节点张量而是中间节点(中间节点张量). 如果该张量的属性requires_grad=True,叶子节点张量的属性grad中,不会在中间节点张量的属性grad中保存这个张量的梯度,这是。
2023-07-29 15:21:11
520
原创 【异常错误】deepspeed:Cannot specify num_nodes/gpus with include/exclude(deepspeed配置GPU id)
是因为你既然指定了GPU的ID,那么就不需要再设置“--num_nodes”、“--num_gpus”
2023-07-29 09:36:02
406
原创 【异常错误】OSError: libtorch_hip.so: cannot open shared object file: No such file or directory
OSError: libtorch_hip.so: cannot open shared object file: No such file or directory · Issue #2525 · pytorch/audio · GitHub
2023-07-29 09:13:04
274
原创 Megatron-LM、NVIDIA NeMo、MegaMolBART 、model_optim_rng.pt 文件是什么?
首先我在github上看到两个issue:
2023-07-27 09:22:51
139
原创 IUPAC和SMILES的相互转换
这种方法只能解决非常简单的转换,更难的SMILES之间的转换可能需要神经网络解决 ,暂时还没仔细看,后面再仔细看吧...
2023-07-25 19:23:51
265
原创 分类、回归常用损失函数
MAE 与 MSE 的区别:MAE 和 MSE 作为损失函数的主要区别是:MSE 损失相比于 MAE 通常可以更快的收敛,但 MAE 损失对于异常值更加健壮,即更加不易受到异常值影响。
2023-07-25 09:49:36
588
原创 多任务学习、多损失函数权重平衡
构建所有loss的Pareto,以一次训练的超低代价得到多种超参组合对应的结果。有代表性的工作参见Intel在2018年NeurIPS(对,就是那个刚改了名字的机器学习顶会)发表的。从预测不确定性的角度引入Bayesian框架,根据各个loss分量当前的大小自动设定其权重。有代表性的工作参见Alex Kendall等人的CVPR2018文章。,文章的二作Yarin Gal是Zoubin Ghahramani的高徒,近几年结合Bayesian思想和深度学习做了很多solid的工作。
2023-07-25 08:43:43
152
原创 NLP 中的pad/padding操作代码分析
进行,并生成一个对应的mask标志列表,用于标记哪些部分是填充内容(值为1)和哪些部分是原始内容(值为0)。填充后的序列列表和掩盖标志列表将作为方法的返回值,供进一步使用或处理。进行填充操作,使其具有相同的长度,以便进行批处理。该方法的作用是将输入的序列列表。
2023-07-23 17:56:06
627
原创 NLP masked_tokens[]、token_masks[]是什么?
和两个列表用于存储处理后的token(分词)结果和对应的mask标志。列表存储经过mask处理后的分词结果。列表存储与每个分词结果对应的mask标志。
2023-07-23 17:16:15
874
pycharm运行命令进行debug
2023-04-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人