剑指 Offer 10- I. 斐波那契数列

剑指 Offer 10- I. 斐波那契数列

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1
示例 2:

输入:n = 5
输出:5
 

提示:

0 <= n <= 100

思路:避免使用递归法(超时),推荐使用迭代法解题,即保存上一次的中间量,用于下一次sum的计算 

时间复杂度:迭代法:O(n)

空间复杂度:O(1),常数个变量(first, second, sum)

// 0 1 1 2 3 5 ...
func fib(n int) int {
    // 迭代法(推荐):i := 1, 返回sum
    if n <= 1 { // 0、1
        return n
    }

    first, second, sum := 0, 1, 1
    // for i := 1; i < n; i++ { // 2、3、4、5...
    for i := 2; i <= n; i++ {
        sum = (first + second) % 1000000007 // sum = first + second 最终会导致sum越界错误!
        first = second
        second = sum
    }

    return sum

    // 迭代法:i := 0, 返回first
    // if n <= 1 {
	// 	return n
	// }

    // first, second, sum := 0, 1, 1
    // for i := 0; i < n; i++ {
    //     sum = (first + second) % 1000000007
    //     first =second
    //     second =sum
    // }
    // return first


    // 递归(超时):
    // if n <= 1 {
	// 	return n
	// }
	
	// return fib(n - 1) + fib(n - 2)

    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值