【面试题】海量数据处理:给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

本文探讨了如何在内存限制为4GB的情况下,通过将50亿URL文件切割成1000份,利用哈希函数和hash_set技术,高效找出两个文件中共同的URL。方法涉及分治策略和哈希映射,以解决超大规模数据的URL匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题

给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

二、分析

50亿个url,每个url 64字节:

一共需要 50亿 × 64字节 ÷ 1024 ÷ 1024 ÷ 1024 = 298G ≈ 300G ,显然无法一次读入内存的。因此这里采用将大文件切割的分治法

假设将每个大文件分割为1000个小文件,那么每个小文件大小为:300G ÷ 1000 × 1024 = 307M ≈ 300M,所以同时加载两个文件则需要 300M × 2 = 600M

三、方案

  1. 分治法 + 哈希取模法
  2. 使用布隆过滤器(允许一定错误率的情况下进行快速查找)

方案1:分治法 + 哈希取模法

  1. 将a、b 两个文件,用相同的哈希函数(把url换成数字的话,哈希函数更容易构造),分解为1000个独立哈希值相同的小文件
  2. 哈希值相同的url必然在序号对应的文件中,因此只要在序号对应的两个文件中进行url的相互匹配即可
  3. 比较每对序号对应的小文件时,可以使用hash_set
    在这里插入图片描述

方案2:布隆过滤器

参考:CSDN文章

利用布隆过滤器的特性,在允许一定错误率的情况下,可以快速判断一个元素是否在一个集合中,适用于在有限内存内处理大量数据。

  1. 先遍历文件a,将其中的url逐一填充到布隆过滤器中
  2. 再遍历文件b,判断其中的url是否在布隆过滤器当中
    注意:布隆过滤器,只能判断某数据一定不存在,不能判断其一定存在,存在误差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值