区间覆盖问题 Time Limit: 1000 ms Memory Limit: 65536 KiB

区间覆盖问题

Time Limit: 1000 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

设x1 , x2 ,…… , xn 是实直线上的n 个点。用固定长度的闭区间覆盖这n 个点,至少需要多少个这样的固定长度闭区间?
对于给定的实直线上的n个点和闭区间的长度k,设计解此问题的有效算法,计算覆盖点集的最少区间数,并证明算法的正确性。

Input

输入数据的第一行有2 个正整数n和k(n≤10000,k≤100),表示有n个点,且固定长度闭区间的长度为k。接下来的1 行中,有n个整数,表示n个点在实直线上的坐标(可能相同)。

Output

输出一个整数,表示计算出的最少区间数输出。

Sample Input

7 3
1 2 3 4 5 -2 6

Sample Output

3

思路:就是先把n个点进行排序,设置一个变量存第一个点,如果第一个点加上覆盖的都到不了下一个点,说明还得加一个覆盖才能将这两个点覆盖,注意的是一开始就需要有一个覆盖。

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n,m;
    int i,j;
    cin>>n>>m;
    int a[10002];
    for(i=0;i<n;i++){
        cin>>a[i];
    }
    sort(a,a+n);
    int num=1;
    int x=a[0];
    for(i=1;i<n;i++){
        if(a[i]>x+m){
            num++;
            x=a[i];
        }
    }
    cout<<num<<endl;
    system("pause");
    return 0;
}

 

思路:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值