脑机接口
文章平均质量分 83
脑机接口领域的一些零零碎碎
神经美学-茂森
作为一名在读博士生,我正尝试着探索人工智能与艺术这一交汇领域的微妙之处,希望能逐渐揭开两者间隐藏的联系。我的研究试图跨越技术的界限,触及人类感知与认知的深层次,以期能更深入地理解“美”这一抽象概念。
展开
-
【表格】EEG作为脑成像工具的分析与应用
EEG作为脑成像工具,通过空间分析方法,能够揭示大脑活动的动态模式和源定位,提供关于大脑功能和疾病状态的深刻见解。#EEG #脑成像 #空间分析 #源成像 #功能连接性 #癫痫病灶定位。则为我们理解大脑在静息和认知任务状态下的工作机制提供了窗口。技术的发展更是拓宽了EEG在临床和认知研究中的应用潜力。技术则进一步推动了我们对大脑内部活动的精确理解。揭示了大脑网络内部复杂的交互作用,而。提供了量化EEG数据的有效手段,而。原创 2024-08-26 16:11:24 · 1257 阅读 · 0 评论 -
神经科学家如何“研究”计算机?——一场跨界的方法论探讨
神经科学家研究计算机的过程揭示了,即使面对非生物系统,神经科学的研究方法也有其局限性。理解一个系统(无论是大脑还是计算机)需要。#神经科学 #计算机 #研究方法 #机制理论 #跨学科。:神经科学、计算机、研究方法、机制理论、跨学科。原创 2024-08-11 18:59:25 · 209 阅读 · 0 评论 -
脑网络布线成本优化——从Caja守恒原则到最小化成本的探索
Caja守恒原则,即,是神经科学中的一个重要概念。它指出,大脑在组织结构上倾向于最小化连接神经元以构成环路或网络所涉及的布线成本。这一原则在过去100年中得到了众多实验的支持,成为理解大脑组织的一个重要视角。原创 2024-07-27 23:09:35 · 1038 阅读 · 0 评论 -
大脑自组织神经网络通俗讲解
大脑自组织神经网络,是指大脑中的神经元通过自组织的方式形成复杂的网络结构,从而实现信息的处理和存储。这一过程涉及到神经元的生长、连接和重塑,是大脑学习和记忆的基础。其核心公式涉及神经网络的权重更新和激活函数,这些公式在深度学习中也有着广泛的应用。这个函数可以将任意实数输入转换为 0 到 1 之间的输出,从而决定神经元是否激活。#大脑自组织神经网络。原创 2024-07-27 22:59:57 · 1211 阅读 · 0 评论 -
大脑网络交互分析:公式与应用
大脑网络交互分析是神经科学研究中的重要领域,它关注大脑不同区域之间的连接与交互方式。通过分析大脑网络,我们可以理解大脑如何处理和整合信息,进而揭示认知、情感和行为的神经基础。在这一领域中,图论和网络分析提供了有力的数学工具,其中核心的一个概念是“连接强度”或“边权重”,它描述了大脑不同区域之间交互的紧密程度。原创 2024-07-27 18:59:24 · 517 阅读 · 0 评论 -
【思维导图】脑机连接:八大伦理困境的全面剖析——从隐私到自由意志的深度探讨
本文主体节选自 量子学派公众号基于“脑机连接”八大伦理困境的进一步讨论大脑电信号输出产生的伦理问题 【1】 隐私问题 芯片接收到的信号组意味着一个或一组欲望,这对于个人来说是极其隐私的想法。 在健康的状态中,脑中的想法应该是封闭的,别人并不知道,只有当我们做决定时才会通过语言和行为表现出最终的决定。 而芯片却能实时接收并分析、翻译出来大脑的欲望。 这意味着我们的隐私将不再隐秘,我们的内心想法容易被外部仪器记录甚至付诸行动。 旧金山最近禁...原创 2021-01-05 12:14:44 · 2648 阅读 · 1 评论 -
【思维导图】专家钢琴师的大脑如何“预知”错误? ——基于EEG的研究揭示运动控制与监测的神经机制
本研究通过EEG技术揭示了专家钢琴师在错误动作执行之前就能检测出错误的神经机制。这一机制依赖于内部正演模型,能够在快速运动中实现有效的错误监控,而无需等待感官反馈。#专家钢琴师 #错误检测 #EEG #内部正演模型 #运动控制 #神经机制 #预测机制 #预期不匹配。:专家钢琴师、错误检测、EEG、内部正演模型、运动控制、神经机制、预测机制、预期不匹配。——基于EEG的研究揭示运动控制与监测的神经机制。这部分的数据处理还有待进一步阅读。08 年的那一篇可能要做的好一些。原创 2020-11-01 23:14:50 · 646 阅读 · 1 评论 -
【思维导图】【脑机接口社区】利用LSTM(长短期记忆网络)来处理脑电数据【提供代码及数据集】
整体框架,这篇文章还是以介绍LSTM为主的本文胜在对LSTM公式的理解上,但关于为什么要用LSTM上没有做非常详尽的说明,这里做一点补充:关于理解部分摘录自这篇题为《多图|入门必看:万字长文带你轻松了解LSTM全貌》的文章,很详细,推荐配合本文阅读。LSTM是RNN网络的变形,自然得首先充分理解RNN留意这里的各个符号的含义,这里四个激活函数,三个sigmoid,一个tanh 是有差异的。...原创 2020-09-12 01:09:20 · 1099 阅读 · 14 评论 -
【脑图】探索大脑的“秘密语言”:事件相关电位在认知研究中的角色
事件相关电位(ERP)、认知神经科学、脑功能检测、认知过程、数据分析。:ERP分析中常涉及信号处理的基本公式,如傅里叶变换用于频谱分析。ERP技术不仅揭示了大脑在不同认知任务下的神经活动模式,还在。(ERP)作为一种无创的脑功能检测技术,能够精确捕捉大脑。,为认知神经科学研究提供了重要的工具。展现出广泛应用前景。原创 2020-07-13 21:47:00 · 3669 阅读 · 2 评论 -
【斯坦福的数据集】脑电图记录的对短和弦进行的响应斯坦福数字存储库及readme文件翻译(斯坦福大学2012年数据集)
EEG数据集的详细描述与分析【表格】EEG数据集的关键信息核心结论:EEG-Recorded Responses to Short Chord Progressions 数据集为音乐认知研究提供了宝贵的资源,通过记录两名参与者在听到不同和弦进行时的EEG反应,揭示了大脑对音乐期待的神经机制。该数据集包含预处理和最小预处理两种格式的数据,适用于不同层次的分析需求,并在知识共享署名许可下开放获取,促进了科学研究的合作与共享。关键点关系描述:参考文献:Kaneshiro, B., Nguyen, D. T.,原创 2020-05-11 18:01:26 · 1366 阅读 · 0 评论 -
【思维导图】我用一张图理解了EEG/ERP数据处理的大致框架
EEG/ERP数据处理是一个复杂而系统的过程,涉及预处理、时域分析、时频分析、频谱分析、功能连接分析、溯源分析和脑网络分析等多个环节。:EEG/ERP、预处理、时域分析、时频分析、功能连接、溯源分析、脑网络分析。EEG/ERP数据处理全面解析:从预处理到脑网络分析。——EEG/ERP数据处理流程与技术详解。【影响因子=5.8,jcr一区】【影响因子=5.8,jcr一区】原创 2020-04-16 23:55:15 · 2031 阅读 · 0 评论