1) 算法的基本思想:
普里姆算法的基本思想:普里姆算法是一种构造最小生成树的算法,它是按逐个将顶点连通的方式来构造最小生成树的。
从连通网络 N = { V, E }中的某一顶点 u0 出发,选择与它关联的具有最小权值的边(u0, v),将其顶点加入到生成树的顶点集合U中。以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u, v),把该边加入到生成树的边集TE中,把它的顶点加入到集合U中。如此重复执行,直到网络中的所有顶点都加入到生成树顶点集合U中为止。
假设G=(V,E)是一个具有n个顶点的带权无向连通图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则构造G的最小生成树T的步骤如下:
(1)初始状态,TE为空,U={v0},v0∈V;
(2)在所有u∈U,v∈V-U的边(u,v) ∈E中找一条代价最小的边(u′,v′)并入TE,同时将v′并入U;
重复执行步骤(2)n-1次,直到U=V为止。
在普里姆算法中,为了便于在集合U和(V-U)之间选取权值最小的边,需要设置两个辅助数组closest和lowcost,分别用于存放顶点的序号和边的权值。
对于每一个顶点v∈V-U,closest[v]为U中距离v最近的一个邻接点,即边 (v,closest[v]) 是在所有与顶点v相邻、且其另一顶点j∈U的边中具有最小权值的边,其最小权值为lowcost[v],即lowcost[v]=cost[v][cl