石子合并(一)
-
描述
-
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
-
输入
-
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
- 输出总代价的最小值,占单独的一行 样例输入
-
3 1 2 3 7 13 7 8 16 21 4 18
样例输出
-
9 239
-
有多组测试数据,输入到文件结束。
想法:简单区间规划
动态转移方程: mp[j][i+j]=min(mp[j][i+j],mp[j][k]+mp[k+1][i+j]+sum[i+j]-sum[j-1]);
mp【i】【i+j】保存从a【i】开始长度为j的和
代码:
#include<stdio.h>
#include<string.h>
int a[210];
int mp[210][210];
int sum[210];
int min(int x,int y)
{return x<y?x:y;}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int i,j,k;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];//前i项和
}
for(i=1;i<n;i++)
for(j=1;j<=n;j++)
mp[i][j]=i==j?0:9999999;
for(i=1;i<=n;i++)//区间开始点
{
for(j=1;j<=n-i;j++)//区间长度
for(k=j;k<=i+j-1;k++)//区间中的点
mp[j][i+j]=min(mp[j][i+j],mp[j][k]+mp[k+1][i+j]+sum[i+j]-sum[j-1]);
}
printf("%d\n",mp[1][n]);
}
return 0;
}