(区间dp)南阳理工 acm 737 石子合并(一)

石子合并(一)

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述
    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239

想法:简单区间规划

动态转移方程:    mp[j][i+j]=min(mp[j][i+j],mp[j][k]+mp[k+1][i+j]+sum[i+j]-sum[j-1]);

mp【i】【i+j】保存从a【i】开始长度为j的和

代码:

#include<stdio.h>
#include<string.h>
int a[210];
int mp[210][210];
int sum[210];
int min(int x,int y)
{return x<y?x:y;}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
    int i,j,k;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        sum[i]=sum[i-1]+a[i];//前i项和
    }
    for(i=1;i<n;i++)
        for(j=1;j<=n;j++)
            mp[i][j]=i==j?0:9999999;
    for(i=1;i<=n;i++)//区间开始点
    {
        for(j=1;j<=n-i;j++)//区间长度
            for(k=j;k<=i+j-1;k++)//区间中的点
                mp[j][i+j]=min(mp[j][i+j],mp[j][k]+mp[k+1][i+j]+sum[i+j]-sum[j-1]);
    }
    printf("%d\n",mp[1][n]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值