百度之星度度熊与邪恶大魔王(完全背包)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_37164003/article/details/76735963

度度熊与邪恶大魔王

 
 Accepts: 2033
 
 Submissions: 12471
 Time Limit: 2000/1000 MS (Java/Others)
 
 Memory Limit: 32768/32768 K (Java/Others)
Problem Description

度度熊为了拯救可爱的公主,于是与邪恶大魔王战斗起来。

邪恶大魔王的麾下有n个怪兽,每个怪兽有a[i]的生命值,以及b[i]的防御力。

度度熊一共拥有m种攻击方式,第i种攻击方式,需要消耗k[i]的晶石,造成p[i]点伤害。

当然,如果度度熊使用第i个技能打在第j个怪兽上面的话,会使得第j个怪兽的生命值减少p[i]-b[j],当然如果伤害小于防御,那么攻击就不会奏效。

如果怪兽的生命值降为0或以下,那么怪兽就会被消灭。

当然每个技能都可以使用无限次。

请问度度熊最少携带多少晶石,就可以消灭所有的怪兽。

Input

本题包含若干组测试数据。

第一行两个整数n,m,表示有n个怪兽,m种技能。

接下来n行,每行两个整数,a[i],b[i],分别表示怪兽的生命值和防御力。

再接下来m行,每行两个整数k[i]和p[i],分别表示技能的消耗晶石数目和技能的伤害值。

数据范围:

1<=n<=100000

1<=m<=1000

1<=a[i]<=1000

0<=b[i]<=10

0<=k[i]<=100000

0<=p[i]<=1000

Output

对于每组测试数据,输出最小的晶石消耗数量,如果不能击败所有的怪兽,输出-1

Sample Input
1 2
3 5
7 10
6 8
1 2
3 5
10 7
8 6
Sample Output
6
18
想法:完全背包
代码:
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
using namespace std;
#define INF 0x3f3f3f3f
long long a[100010],b[100010];
long long k[1010];
long long p[1010];
long long dp[1010][15];
int main()
{
    int n,m;
    while(scanf("%d %d",&n,&m)!=EOF)
    {
       int i,j,k1;
       long long maxx=0,maxn=0, mass=0;
       for(i=0;i<n;i++)
       {
          scanf("%I64d %I64d",&a[i],&b[i]);
          maxx=max(maxx,b[i]);
          mass=max(mass,a[i]);
       }
       for(i=0;i<m;i++)
       {
           scanf("%I64d %I64d",&k[i],&p[i]);
           maxn=max(maxn,p[i]);
       }
        if(maxn<=maxx)
        {
            printf("-1\n");
            continue;
        }
        memset(dp,0,sizeof(dp));
        for(i=0;i<=10;i++)//防御
        {
           for(j=1;j<=mass;j++)//造成伤害
            {
               dp[j][i]=INF;
                for(k1=0;k1<m;k1++)//第k1个技能
                {
                  long long dm=p[k1]-i;
                  if(dm<=0)
                    continue;
                  if(dm>j)
                  {
                      dp[j][i]=min(dp[j][i],k[k1]);
                  }
                  else
                 {
                   dp[j][i]=min(dp[j][i],dp[j-dm][i]+k[k1]);
                 }
                }
            }
        }
        long long sum=0;
        for(i=0;i<n;i++)
        {
            sum+=dp[a[i]][b[i]];
        }
       printf("%I64d\n",sum);
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页